Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 40(5): e106309, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33459381

RESUMEN

The N6-methyladenosine (m6 A) RNA modification serves crucial functions in RNA metabolism; however, the molecular mechanisms underlying the regulation of m6 A are not well understood. Here, we establish arginine methylation of METTL14, a component of the m6 A methyltransferase complex, as a novel pathway that controls m6 A deposition in mammalian cells. Specifically, protein arginine methyltransferase 1 (PRMT1) interacts with, and methylates the intrinsically disordered C terminus of METTL14, which promotes its interaction with RNA substrates, enhances its RNA methylation activity, and is crucial for its interaction with RNA polymerase II (RNAPII). Mouse embryonic stem cells (mESCs) expressing arginine methylation-deficient METTL14 exhibit significantly reduced global m6 A levels. Transcriptome-wide m6 A analysis identified 1,701 METTL14 arginine methylation-dependent m6 A sites located in 1,290 genes involved in various cellular processes, including stem cell maintenance and DNA repair. These arginine methylation-dependent m6 A sites are associated with enhanced translation of genes essential for the repair of DNA interstrand crosslinks; thus, METTL14 arginine methylation-deficient mESCs are hypersensitive to DNA crosslinking agents. Collectively, these findings reveal important aspects of m6 A regulation and new functions of arginine methylation in RNA metabolism.


Asunto(s)
Adenosina/análogos & derivados , Arginina/química , Metiltransferasas/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Procesamiento Proteico-Postraduccional , Proteína-Arginina N-Metiltransferasas/metabolismo , ARN Polimerasa II/metabolismo , Adenosina/química , Animales , Citoplasma , Metiltransferasas/química , Metiltransferasas/genética , Ratones , Células Madre Embrionarias de Ratones/citología , Proteína-Arginina N-Metiltransferasas/genética , ARN Polimerasa II/genética , Transcriptoma
2.
Nucleic Acids Res ; 49(15): 8573-8591, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34329467

RESUMEN

R-loops, which consist of a DNA/RNA hybrid and a displaced single-stranded DNA (ssDNA), are increasingly recognized as critical regulators of chromatin biology. R-loops are particularly enriched at gene promoters, where they play important roles in regulating gene expression. However, the molecular mechanisms that control promoter-associated R-loops remain unclear. The epigenetic 'reader' Tudor domain-containing protein 3 (TDRD3), which recognizes methylarginine marks on histones and on the C-terminal domain of RNA polymerase II, was previously shown to recruit DNA topoisomerase 3B (TOP3B) to relax negatively supercoiled DNA and prevent R-loop formation. Here, we further characterize the function of TDRD3 in R-loop metabolism and introduce the DExH-box helicase 9 (DHX9) as a novel interaction partner of the TDRD3/TOP3B complex. TDRD3 directly interacts with DHX9 via its Tudor domain. This interaction is important for recruiting DHX9 to target gene promoters, where it resolves R-loops in a helicase activity-dependent manner to facilitate gene expression. Additionally, TDRD3 also stimulates the helicase activity of DHX9. This stimulation relies on the OB-fold of TDRD3, which likely binds the ssDNA in the R-loop structure. Thus, DHX9 functions together with TOP3B to suppress promoter-associated R-loops. Collectively, these findings reveal new functions of TDRD3 and provide important mechanistic insights into the regulation of R-loop metabolism.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Proteínas de Neoplasias/metabolismo , Regiones Promotoras Genéticas , Proteínas/metabolismo , Estructuras R-Loop , Cromatina , ADN-Topoisomerasas de Tipo I/metabolismo , Células HEK293 , Humanos , Células MCF-7 , Dominios y Motivos de Interacción de Proteínas , Proteínas/química , Transcripción Genética
3.
Curr Opin Oncol ; 34(5): 546-551, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35788128

RESUMEN

PURPOSE OF REVIEW: In this review, we summarize the biological roles of methionine, methionine adenosyl transferase 2A (MAT2A) and S -adenosyl methionine (SAM) in methylation reactions during tumorigenesis. Newly emerged inhibitors targeting the methionine-MAT2A-SAM axis will be discussed. RECENT FINDINGS: SAM is the critical and global methyl-donor for methylation reactions regulating gene expression, and in mammalian cells, it is synthesized by MAT2A using methionine. Recent studies have validated methionine and MAT2A as metabolic dependencies of cancer cells because of their essential roles in SAM biosynthesis. MAT2A inhibition leads to synthetic lethality in methylthioadenosine-phosphorylase (MTAP)-deleted cancers, which accounts for 15% of all cancer types. Of note, remarkable progress has been made in developing inhibitors targeting the methionine-MAT2A-SAM axis, as the first-in-class MAT2A inhibitors AG-270 and IDE397 enter clinical trials to treat cancer. SUMMARY: The methionine-MAT2A-SAM axis plays an important role in tumorigenesis by providing SAM as a critical substrate for abnormal protein as well as DNA and RNA methylation in cancer cells. Targeting SAM biosynthesis through MAT2A inhibition has emerged as a novel and promising strategy for cancer therapy.


Asunto(s)
Neoplasias , Animales , Carcinogénesis , Humanos , Mamíferos/metabolismo , Metionina/metabolismo , Metionina Adenosiltransferasa/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , S-Adenosilmetionina/metabolismo
4.
Mol Cell ; 53(3): 484-97, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24507716

RESUMEN

Tudor domain-containing protein 3 (TDRD3) is a major methylarginine effector molecule that reads methyl-histone marks and facilitates gene transcription. However, the underlying mechanism by which TDRD3 functions as a transcriptional coactivator is unknown. We identified topoisomerase IIIB (TOP3B) as a component of the TDRD3 complex. TDRD3 serves as a molecular bridge between TOP3B and arginine-methylated histones. The TDRD3-TOP3B complex is recruited to the c-MYC gene promoter primarily by the H4R3me2a mark, and the complex promotes c-MYC gene expression. TOP3B relaxes negative supercoiled DNA and reduces transcription-generated R loops in vitro. TDRD3 knockdown in cells increases R loop formation at the c-MYC locus, and Tdrd3 null mice exhibit elevated R loop formation at this locus in B cells. Tdrd3 null mice show significantly increased c-Myc/Igh translocation, a process driven by R loop structures. By reducing negative supercoiling and resolving R loops, TOP3B promotes transcription, protects against DNA damage, and reduces the frequency of chromosomal translocations.


Asunto(s)
Cromatina/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , Proteínas/metabolismo , Animales , Arginina/metabolismo , Regulación de la Expresión Génica , Inestabilidad Genómica , Células HEK293 , Humanos , Metilación , Ratones , Ratones Noqueados , Transporte de Proteínas , Proteínas/genética , Proteínas/fisiología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transcripción Genética
5.
Blood ; 134(15): 1257-1268, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31395602

RESUMEN

Relapse remains the main cause of MLL-rearranged (MLL-r) acute lymphoblastic leukemia (ALL) treatment failure resulting from persistence of drug-resistant clones after conventional chemotherapy treatment or targeted therapy. Thus, defining mechanisms underlying MLL-r ALL maintenance is critical for developing effective therapy. PRMT1, which deposits an asymmetric dimethylarginine mark on histone/non-histone proteins, is reportedly overexpressed in various cancers. Here, we demonstrate elevated PRMT1 levels in MLL-r ALL cells and show that inhibition of PRMT1 significantly suppresses leukemic cell growth and survival. Mechanistically, we reveal that PRMT1 methylates Fms-like receptor tyrosine kinase 3 (FLT3) at arginine (R) residues 972 and 973 (R972/973), and its oncogenic function in MLL-r ALL cells is FLT3 methylation dependent. Both biochemistry and computational analysis demonstrate that R972/973 methylation could facilitate recruitment of adaptor proteins to FLT3 in a phospho-tyrosine (Y) residue 969 (Y969) dependent or independent manner. Cells expressing R972/973 methylation-deficient FLT3 exhibited more robust apoptosis and growth inhibition than did Y969 phosphorylation-deficient FLT3-transduced cells. We also show that the capacity of the type I PRMT inhibitor MS023 to inhibit leukemia cell viability parallels baseline FLT3 R972/973 methylation levels. Finally, combining FLT3 tyrosine kinase inhibitor PKC412 with MS023 treatment enhanced elimination of MLL-r ALL cells relative to PKC412 treatment alone in patient-derived mouse xenografts. These results indicate that abolishing FLT3 arginine methylation through PRMT1 inhibition represents a promising strategy to target MLL-r ALL cells.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Tirosina Quinasa 3 Similar a fms/metabolismo , Animales , Apoptosis , Proliferación Celular , Supervivencia Celular , Reordenamiento Génico , Humanos , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Células Tumorales Cultivadas
6.
Br J Cancer ; 122(9): 1288-1297, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32147668

RESUMEN

BACKGROUND: Previous studies suggested that mdivi-1 (mitochondrial division inhibitor), a putative inhibitor of dynamin-related protein (DRP1), decreased cancer cell proliferation through inducing mitochondrial fusion and altering oxygen consumption. However, the metabolic reprogramming underlying the DRP1 inhibition is still unclear in cancer cells. METHODS: To better understand the metabolic effect of DRP1 inhibition, [U-13C]glucose isotope tracing was employed to assess mdivi-1 effects in several cancer cell lines, DRP1-WT (wild-type) and DRP1-KO (knockout) H460 lung cancer cells and mouse embryonic fibroblasts (MEFs). RESULTS: Mitochondrial staining confirmed that mdivi-1 treatment and DRP1 deficiency induced mitochondrial fusion. Surprisingly, metabolic isotope tracing found that mdivi-1 decreased mitochondrial oxidative metabolism in the lung cancer cell lines H460, A549 and the colon cancer cell line HCT116. [U-13C]glucose tracing studies also showed that the TCA cycle intermediates had significantly lower enrichment in mdivi-1-treated cells. In comparison, DRP1-WT and DRP1-KO H460 cells had similar oxidative metabolism, which was decreased by mdivi-1 treatment. Furthermore, mdivi-1-mediated effects on oxidative metabolism were independent of mitochondrial fusion. CONCLUSIONS: Our data suggest that, in cancer cells, mdivi-1, a putative inhibitor of DRP1, decreases oxidative metabolism to impair cell proliferation.


Asunto(s)
Dinaminas/genética , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Quinazolinonas/farmacología , Células A549 , Animales , Isótopos de Carbono/química , Isótopos de Carbono/farmacología , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Dinaminas/antagonistas & inhibidores , Técnicas de Inactivación de Genes , Glucosa/química , Glucosa/farmacología , Células HCT116 , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos
7.
Mol Cell ; 48(4): 487-8, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-23200121

RESUMEN

In this issue, Lee et al. (2012) demonstrate that the degradation of RORα is regulated by the EZH2-DCAF1/DDB1/CUL4 proteasome axis, thus identifying protein methylation as a posttranslational modification that can orchestrate protein destruction through a motif termed the "methyl degron."

8.
Nucleic Acids Res ; 46(6): 3061-3074, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29471495

RESUMEN

DNA topoisomerase 3B (TOP3B) is unique among all mammalian topoisomerases for its dual activities that resolve both DNA and RNA topological entanglements to facilitate transcription and translation. However, the mechanism by which TOP3B activity is regulated is still elusive. Here, we have identified arginine methylation as an important post-translational modification (PTM) for TOP3B activity. Protein arginine methyltransferase (PRMT) 1, PRMT3 and PRMT6 all methylate TOP3B in vitro at its C-terminal arginine (R) and glycine (G)-rich motif. Site-directed mutagenesis analysis identified R833 and R835 as the major methylation sites. Using a methylation-specific antibody, we confirmed that TOP3B is methylated in cells and that mutation of R833 and R835 to lysine (K) significantly reduces TOP3B methylation. The methylation-deficient TOP3B (R833/835K) is less active in resolving negatively supercoiled DNA, which consequently lead to accumulation of co-transcriptionally formed R-loops in vitro and in cells. Additionally, the methylation-deficient TOP3B (R833/835K) shows reduced stress granule localization, indicating that methylation is critical for TOP3B function in translation regulation. Mechanistically, we found that R833/835 methylation is partially involved in the interaction of TOP3B with its auxiliary factor, the Tudor domain-containing protein 3 (TDRD3). Together, our findings provide the first evidence for the regulation of TOP3B activity by PTM.


Asunto(s)
Secuencias de Aminoácidos/genética , Arginina/genética , Gránulos Citoplasmáticos/metabolismo , ADN-Topoisomerasas de Tipo I/genética , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Arginina/metabolismo , Línea Celular Tumoral , ADN-Topoisomerasas de Tipo I/metabolismo , Células HeLa , Humanos , Metilación , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Estrés Fisiológico
9.
Neural Plast ; 2020: 6137083, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32684921

RESUMEN

Hereditary hearing loss is one of the most common sensory disabilities worldwide. Mutation of POU domain class 4 transcription factor 3 (POU4F3) is considered the pathogenic cause of autosomal dominant nonsyndromic hearing loss (ADNSHL), designated as autosomal dominant nonsyndromic deafness 15. In this study, four novel variants in POU4F3, c.696G>T (p.Glu232Asp), c.325C>T (p.His109Tyr), c.635T>C (p.Leu212Pro), and c.183delG (p.Ala62Argfs∗22), were identified in four different Chinese families with ADNSHL by targeted next-generation sequencing and Sanger sequencing. Based on the American College of Medical Genetics and Genomics guidelines, c.183delG (p.Ala62Argfs∗22) is classified as a pathogenic variant, c.696G>T (p.Glu232Asp) and c.635T>C (p.Leu212Pro) are classified as likely pathogenic variants, and c.325C>T (p.His109Tyr) is classified as a variant of uncertain significance. Based on previous reports and the results of this study, we speculated that POU4F3 pathogenic variants are significant contributors to ADNSHL in the East Asian population. Therefore, screening of POU4F3 should be a routine examination for the diagnosis of hereditary hearing loss.


Asunto(s)
Pérdida Auditiva Sensorineural/genética , Proteínas de Homeodominio/genética , Mutación Missense , Linaje , Factor de Transcripción Brn-3C/genética , Adolescente , Niño , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Adulto Joven
10.
J Biol Chem ; 293(39): 15290-15303, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30131339

RESUMEN

Glucose is a critical nutrient for cell proliferation. However, the molecular pathways that regulate glucose metabolism are still elusive. We discovered that co-activator-associated arginine methyltransferase 1 (CARM1) suppresses glucose metabolism toward serine biosynthesis. By tracing the 13C-labeled glucose, we found that Carm1 knockout mouse embryonic fibroblasts exhibit significantly increased de novo serine synthesis than WT cells. This is caused, at least in part, by the reduced pyruvate kinase (PK) activity in these cells. The M2 isoform of PK (PKM2) is arginine-methylated by CARM1, and methylation enhances its activity. Mechanistically, CARM1 methylates PKM2 at arginines 445 and 447, which enhances PKM2 tetramer formation. Consequently, Carm1 knockout cells exhibit significant survival advantages over WT cells when extracellular serine is limited, likely due to their enhanced de novo serine synthesis capacity. Altogether, we identified CARM1 as an important regulator of glucose metabolism and serine synthesis.


Asunto(s)
Proteínas Portadoras/genética , Glucosa/genética , Proteínas de la Membrana/genética , Proteína-Arginina N-Metiltransferasas/genética , Piruvato Quinasa/genética , Serina/biosíntesis , Hormonas Tiroideas/genética , Animales , Arginina/biosíntesis , Proteínas Portadoras/química , Línea Celular Tumoral , Proliferación Celular/genética , Cristalografía por Rayos X , Fibroblastos/metabolismo , Glucosa/metabolismo , Glucólisis/genética , Humanos , Proteínas de la Membrana/química , Metilación , Ratones , Ratones Noqueados , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Proteína-Arginina N-Metiltransferasas/química , Piruvato Quinasa/química , Serina/genética , Hormonas Tiroideas/química , Proteínas de Unión a Hormona Tiroide
11.
Mol Cell ; 40(6): 1016-23, 2010 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-21172665

RESUMEN

Specific sites of histone tail methylation are associated with transcriptional activity at gene loci. These methyl marks are interpreted by effector molecules, which harbor protein domains that bind the methylated motifs and facilitate either active or inactive states of transcription. CARM1 and PRMT1 are transcriptional coactivators that deposit H3R17me2a and H4R3me2a marks, respectively. We used a protein domain microarray approach to identify the Tudor domain-containing protein TDRD3 as a "reader" of these marks. Importantly, TDRD3 itself is a transcriptional coactivator. This coactivator activity requires an intact Tudor domain. TDRD3 is recruited to an estrogen-responsive element in a CARM1-dependent manner. Furthermore, ChIP-seq analysis of TDRD3 reveals that it is predominantly localized to transcriptional start sites. Thus, TDRD3 is an effector molecule that promotes transcription by binding methylarginine marks on histone tails.


Asunto(s)
Arginina/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Guanilato Ciclasa/metabolismo , Histonas/química , Histonas/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas/metabolismo , Proteínas Represoras/metabolismo , Proteínas Adaptadoras de Señalización CARD/genética , Guanilato Ciclasa/genética , Humanos , Metilación , Análisis por Matrices de Proteínas , Proteína-Arginina N-Metiltransferasas/genética , Proteínas/genética , Proteínas Represoras/genética , Transcripción Genética/genética
12.
J Biol Chem ; 290(27): 16723-43, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-25979344

RESUMEN

Human protein arginine methyltransferase (PRMT) 9 symmetrically dimethylates arginine residues on splicing factor SF3B2 (SAP145) and has been functionally linked to the regulation of alternative splicing of pre-mRNA. Site-directed mutagenesis studies on this enzyme and its substrate had revealed essential unique residues in the double E loop and the importance of the C-terminal duplicated methyltransferase domain. In contrast to what had been observed with other PRMTs and their physiological substrates, a peptide containing the methylatable Arg-508 of SF3B2 was not recognized by PRMT9 in vitro. Although amino acid substitutions of residues surrounding Arg-508 had no great effect on PRMT9 recognition of SF3B2, moving the arginine residue within this sequence abolished methylation. PRMT9 and PRMT5 are the only known mammalian enzymes capable of forming symmetric dimethylarginine (SDMA) residues as type II PRMTs. We demonstrate here that the specificity of these enzymes for their substrates is distinct and not redundant. The loss of PRMT5 activity in mouse embryo fibroblasts results in almost complete loss of SDMA, suggesting that PRMT5 is the primary SDMA-forming enzyme in these cells. PRMT9, with its duplicated methyltransferase domain and conserved sequence in the double E loop, appears to have a unique structure and specificity among PRMTs for methylating SF3B2 and potentially other polypeptides.


Asunto(s)
Proteínas F-Box/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Arginina/genética , Arginina/metabolismo , Biocatálisis , Cristalografía por Rayos X , Proteínas F-Box/química , Proteínas F-Box/genética , Humanos , Metilación , Ratones , Datos de Secuencia Molecular , Proteína Metiltransferasas/genética , Proteína Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/química , Proteína-Arginina N-Metiltransferasas/genética , Empalme del ARN , Factores de Empalme de ARN , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Especificidad por Sustrato
13.
Nucleic Acids Res ; 42(13): 8297-309, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24939901

RESUMEN

Protein arginine methyltransferase 6 (PRMT6) is a nuclear enzyme that modifies histone tails. To help elucidate the biological function of PRMT6 in vivo, we generated transgenic mice that ubiquitously express PRMT6 fused to the hormone-binding portion of the estrogen receptor (ER*). The ER*-PRMT6 fusion is unstable and cytoplasmic, but upon systemic treatment with tamoxifen, it becomes stabilized and translocates into the nucleus. As a result, a dramatic increase in the H3R2me2a histone mark is observed. We found that one consequence of induced ER*-PRMT6 activation is increased IL-6 levels. IL-6 expression is regulated by the nuclear factor-kappa B (NF-κB) transcription factor, and PRMT6 functions as a coactivator of this pathway. We show that PRMT6 directly interacts with RelA, and that its overexpression enhances the transcriptional activity of an ectopic NF-κB reporter and endogenously regulates NF-κB target genes. PRMT6 is recruited, by RelA, to selective NF-κB target promoters upon TNF-α stimulation. Moreover, ER*-PRMT6 activation causes RelA accumulation in the nucleus. In summary, we observe that PRMT6 is recruited to chromatin at selective NF-κB target promoters, where it likely impacts the histone code and/or methylates other chromatin-associated proteins to facilitate transcription.


Asunto(s)
FN-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Animales , Núcleo Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Transgénicos , Modelos Animales , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Proteína-Arginina N-Metiltransferasas/genética , Receptores de Estrógenos/genética , Tamoxifeno/farmacología , Factor de Transcripción ReIA/metabolismo
14.
Acta Biochim Biophys Sin (Shanghai) ; 48(7): 623-31, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27252122

RESUMEN

The dynamic structure of chromatin, which exists in two conformational states: heterochromatin and euchromatin, alters the accessibility of the DNA to regulatory factors during transcription, replication, recombination, and DNA damage repair. Chemical modifications of histones and DNA, as well as adenosine triphospahate-dependent nucleosome remodeling, have been the major focus of research on chromatin dynamics over the past two decades. However, recent studies using a DNA-RNA hybrid-specific antibody and next-generation sequencing approaches have revealed that the formation of R-loops, one of the most common non-canonical DNA structures, is an emerging regulator of chromatin states. This review focuses on recent insights into the interplay between R-loop formation and the epigenetic modifications of chromatin in normal and disease states.


Asunto(s)
Cromatina/metabolismo , Cromatina/química , Daño del ADN , Reparación del ADN , Replicación del ADN , Conformación Proteica , Recombinación Genética , Transcripción Genética
15.
Leukemia ; 38(6): 1236-1245, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643304

RESUMEN

Targeting the metabolic dependencies of acute myeloid leukemia (AML) cells is a promising therapeutical strategy. In particular, the cysteine and methionine metabolism pathway (C/M) is significantly altered in AML cells compared to healthy blood cells. Moreover, methionine has been identified as one of the dominant amino acid dependencies of AML cells. Through RNA-seq, we found that the two nucleoside analogs 8-chloro-adenosine (8CA) and 8-amino-adenosine (8AA) significantly suppress the C/M pathway in AML cells, and methionine-adenosyltransferase-2A (MAT2A) is one of most significantly downregulated genes. Additionally, mass spectrometry analysis revealed that Venetoclax (VEN), a BCL-2 inhibitor recently approved by the FDA for AML treatment, significantly decreases the intracellular level of methionine in AML cells. Based on these findings, we hypothesized that combining 8CA or 8AA with VEN can efficiently target the Methionine-MAT2A-S-adenosyl-methionine (SAM) axis in AML. Our results demonstrate that VEN and 8CA/8AA synergistically decrease the SAM biosynthesis and effectively target AML cells both in vivo and in vitro. These findings suggest the promising potential of combining 8CA/8AA and VEN for AML treatment by inhibiting Methionine-MAT2A-SAM axis and provide a strong rationale for our recently activated clinical trial.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Sinergismo Farmacológico , Leucemia Mieloide Aguda , Metionina Adenosiltransferasa , Metionina , S-Adenosilmetionina , Sulfonamidas , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Humanos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Sulfonamidas/farmacología , Metionina/metabolismo , Metionina/análogos & derivados , Metionina Adenosiltransferasa/metabolismo , Metionina Adenosiltransferasa/antagonistas & inhibidores , Metionina Adenosiltransferasa/genética , Animales , Ratones , S-Adenosilmetionina/farmacología , S-Adenosilmetionina/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral
16.
Nat Commun ; 15(1): 2809, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561334

RESUMEN

Protein arginine methyltransferase 9 (PRMT9) is a recently identified member of the PRMT family, yet its biological function remains largely unknown. Here, by characterizing an intellectual disability associated PRMT9 mutation (G189R) and establishing a Prmt9 conditional knockout (cKO) mouse model, we uncover an important function of PRMT9 in neuronal development. The G189R mutation abolishes PRMT9 methyltransferase activity and reduces its protein stability. Knockout of Prmt9 in hippocampal neurons causes alternative splicing of ~1900 genes, which likely accounts for the aberrant synapse development and impaired learning and memory in the Prmt9 cKO mice. Mechanistically, we discover a methylation-sensitive protein-RNA interaction between the arginine 508 (R508) of the splicing factor 3B subunit 2 (SF3B2), the site that is exclusively methylated by PRMT9, and the pre-mRNA anchoring site, a cis-regulatory element that is critical for RNA splicing. Additionally, using human and mouse cell lines, as well as an SF3B2 arginine methylation-deficient mouse model, we provide strong evidence that SF3B2 is the primary methylation substrate of PRMT9, thus highlighting the conserved function of the PRMT9/SF3B2 axis in regulating pre-mRNA splicing.


Asunto(s)
Empalme Alternativo , ARN , Animales , Humanos , Ratones , Arginina/metabolismo , Ratones Noqueados , Mutación , Proteína-Arginina N-Metiltransferasas/metabolismo , ARN/metabolismo , Precursores del ARN/metabolismo , Empalme del ARN/genética
17.
J Biol Chem ; 287(1): 429-437, 2012 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-22072714

RESUMEN

In epigenetic signaling pathways, histone tails are heavily modified, resulting in the recruitment of effector molecules that can influence transcription. One such molecule, plant homeodomain finger protein 20 (PHF20), uses a Tudor domain to read dimethyl lysine residues and is a known component of the MOF (male absent on the first) histone acetyltransferase protein complex, suggesting it plays a role in the cross-talk between lysine methylation and histone acetylation. We sought to investigate the biological role of PHF20 by generating a knockout mouse. Without PHF20, mice die shortly after birth and display a wide variety of phenotypes within the skeletal and hematopoietic systems. Mechanistically, PHF20 is not required for maintaining the global H4K16 acetylation levels or locus specific histone acetylation but instead works downstream in transcriptional regulation of MOF target genes.


Asunto(s)
Regulación de la Expresión Génica/genética , Histona Acetiltransferasas/metabolismo , Proteínas de Homeodominio/genética , Lisina/metabolismo , Animales , Proteínas de Unión al ADN , Femenino , Técnicas de Inactivación de Genes , Histonas/química , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Factores de Transcripción , Transcripción Genética/genética
18.
Methods Mol Biol ; 2666: 265-278, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37166671

RESUMEN

R-loops are three-stranded nucleic acid structures that consist of a DNA-RNA hybrid and a displaced single-stranded DNA. Since it was first reported by Ronald Davis and colleagues over 40 years ago, the study of R-loops has become an increasingly expanded area of research. Numerous factors have been identified to modulate the dynamic formation and resolution of R-loops, which are critical for proper controls of gene expression and genome stability. Along the lines of these discoveries, various biochemical and cellular assays have been developed to detect R-loop changes in vitro and in vivo. In this chapter, we describe a protocol for measuring R-loop formation using a plasmid-based in vitro transcription assay. The R-loop formed is then detected and quantified by using gel mobility, antibody staining, and DNA-RNA immunoprecipitation (DRIP)-qPCR assays. Unlike the helicase assay that uses short R-loop substrates, this assay system introduces DNA topology and active transcription as additional variables that impact R-loop formation, thus, more closely recapitulating in vivo situations. Furthermore, this method can be adopted for investigation of cis-elements and trans-acting factors that influence R-loop formation.


Asunto(s)
ADN , Estructuras R-Loop , ADN/química , ARN/química , Plásmidos/genética , ADN de Cadena Simple
19.
J Med Chem ; 66(19): 13665-13683, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37560786

RESUMEN

Less studied than the other protein arginine methyltransferase isoforms, PRMT7 and PRMT9 have recently been identified as important therapeutic targets. Yet, most of their biological roles and functions are still to be defined, as well as the structural requirements that could drive the identification of selective modulators of their activity. We recently described the structural requirements that led to the identification of potent and selective PRMT4 inhibitors spanning both the substrate and the cosubstrate pockets. The reanalysis of the data suggested a PRMT7 preferential binding for shorter derivatives and prompted us to extend these structural studies to PRMT9. Here, we report the identification of the first potent PRMT7/9 inhibitor and its binding mode to the two PRMT enzymes. Label-free quantification mass spectrometry confirmed significant inhibition of PRMT activity in cells. We also report the setup of an effective AlphaLISA assay to screen small molecule inhibitors of PRMT9.


Asunto(s)
Proteína-Arginina N-Metiltransferasas , Arginina/química , Metilación , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores
20.
J Cell Biochem ; 109(5): 1013-24, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20069563

RESUMEN

The androgen-signaling pathway plays critical roles in normal prostate development, benign prostatic hyperplasia, established prostate cancer, and in prostate carcinogenesis. In this study, we report that trihydrophobin 1 (TH1) is a potent negative regulator to attenuate the androgen signal-transduction cascade through promoting androgen receptor (AR) degradation. TH1 interacts with AR both in vitro and in vivo, decreases the stability of AR, and promotes AR ubiquitination in a ligand-independent manner. TH1 also associates with AR at the active androgen-responsive prostate-specific antigen (PSA) promoter in the nucleus of LNCaP cells. Decrease of endogenous AR protein by TH1 interferes with androgen-induced luciferase reporter expression and reduces endogenous PSA expression. Taken together, these results indicate that TH1 is a novel regulator to control the duration and magnitude of androgen signal transduction and might be directly involved in androgen-related developmental, physiological, and pathological processes.


Asunto(s)
Andrógenos/metabolismo , Proteínas Portadoras/metabolismo , Procesamiento Proteico-Postraduccional , Receptores Androgénicos/metabolismo , Transducción de Señal , Animales , Células COS , Proteínas Portadoras/genética , Línea Celular Tumoral , Núcleo Celular/metabolismo , Chlorocebus aethiops , Regulación hacia Abajo , Elementos de Facilitación Genéticos/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas/genética , Antígeno Prostático Específico/genética , Unión Proteica , Estabilidad Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción , Activación Transcripcional/genética , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA