Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Drug Resist Updat ; 72: 101018, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37979442

RESUMEN

Cuproptosis is a newly identified form of cell death driven by copper. Recently, the role of copper and copper triggered cell death in the pathogenesis of cancers have attracted attentions. Cuproptosis has garnered enormous interest in cancer research communities because of its great potential for cancer therapy. Copper-based treatment exerts an inhibiting role in tumor growth and may open the door for the treatment of chemotherapy-insensitive tumors. In this review, we provide a critical analysis on copper homeostasis and the role of copper dysregulation in the development and progression of cancers. Then the core molecular mechanisms of cuproptosis and its role in cancer is discussed, followed by summarizing the current understanding of copper-based agents (copper chelators, copper ionophores, and copper complexes-based dynamic therapy) for cancer treatment. Additionally, we summarize the emerging data on copper complexes-based agents and copper ionophores to subdue tumor chemotherapy resistance in different types of cancers. We also review the small-molecule compounds and nanoparticles (NPs) that may kill cancer cells by inducing cuproptosis, which will shed new light on the development of anticancer drugs through inducing cuproptosis in the future. Finally, the important concepts and pressing questions of cuproptosis in future research that should be focused on were discussed. This review article suggests that targeting cuproptosis could be a novel antitumor therapy and treatment strategy to overcome cancer drug resistance.


Asunto(s)
Cobre , Neoplasias , Humanos , Resistencia a Antineoplásicos/genética , Muerte Celular , Ionóforos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Apoptosis
2.
Carcinogenesis ; 45(4): 262-273, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37997385

RESUMEN

OBJECTIVES: There are three major subtypes of breast cancer, ER+, HER2+ and triple-negative breast cancer (TNBC), namely ER-, PR-, HER2-. TNBC is the most aggressive breast cancer with poor prognosis and no target drug up to now. Actinomycin D (ActD) is a bioactive metabolite of marine bacteria that has been reported to have antitumor activity. The aim of study is to investigate whether ActD has a synergetic effect on TNBC with Doxorubicin (Dox), the major chemotherapeutic drug for TNBC, and explore the underlying mechanism. METHODS: TNBC cell lines HCC1937, MDA-MB-436 and nude mice were used in the study. Drug synergy determination, LDH assay, MMP assay, Hoechst 33342 staining, Flow cytometry, Flexible docking and CESTA assay were carried out. The expression of proteins associated with apoptosis was checked by Western blot and siRNA experiments were performed to investigate the role of P53 and PUMA induced by drugs. RESULTS: There was much higher apoptosis rate of cells in the ActD + Dox group than that in ActD group or Dox group. Expression of MDM2 and BCL-2 was reduced while expression of P53, PUMA and BAX were increased in the groups treated with ActD + Dox or Dox compared to the control group. Furthermore, P53 siRNA or PUMA siRNA tremendously abrogated the cell apoptosis in the groups treated by ActD, Dox and ActD + Dox. Flexible docking and CESTA showed that ActD can bind MDM2. CONCLUSIONS: ActD had a synergetic effect on TNBC with Dox via P53-dependent apoptosis and it may be a new choice for treatment of TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Ratones , Humanos , Animales , Neoplasias de la Mama Triple Negativas/genética , Dactinomicina/farmacología , Dactinomicina/metabolismo , Dactinomicina/uso terapéutico , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ratones Desnudos , Proteínas Reguladoras de la Apoptosis , Línea Celular Tumoral , Doxorrubicina/farmacología , Apoptosis , ARN Interferente Pequeño
3.
BMC Genomics ; 25(1): 155, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38326754

RESUMEN

BACKGROUND: DNA damage repair (DDR) may affect tumorigenesis and therapeutic response in hepatocellular carcinoma (HCC). Long noncoding RNAs (LncRNAs) can regulate DDR and play a vital role in maintaining genomic stability in cancers. Here, we identified a DDR-related prognostic signature in HCC and explored its potential clinical value. METHODS: Data of HCC samples were obtained from the Cancer Genome Atlas (TCGA), and a list of DDR-related genes was extracted from the Molecular Signatures database (MSigDB). A DDR-related lncRNAs signature associated to overall survival (OS) was constructed using the least absolute shrinkage and selection operator-cox regression, and was further validated by the Kaplan-Meier curve and receiver operating characteristic curve. A nomogram integrating other clinical risk factors was established. Moreover, the relationships between the signature with somatic mutation, immune landscape and drug sensitivity were explored. RESULTS: The prognostic model of 5 DDR-related lncRNAs was constructed and classified patients into two risk groups at median cut-off. The low-risk group had a better OS, and the signature was an independent prognostic indicator in HCC. A nomogram of the signature combined with TNM stage was constructed. TP53 gene was more frequently mutated in the high-risk group. Marked differences in immune cells were observed, such as CD4 + T cells, NK cells and macrophages, between the two groups. Moreover, an increase in the expression of immune checkpoint molecules was found in the high-risk group. The low-risk group presented with a significantly higher response to sorafenib or cisplatin. Finally, potential value of this signature was validated in real-world HCC patients. CONCLUSION: Our findings provided a promising insight into DDR-related lncRNAs in HCC and a personalized prediction tool for prognosis and therapeutic response.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , ARN Largo no Codificante/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Pronóstico , Inmunoterapia , Daño del ADN
4.
Biochem Biophys Res Commun ; 693: 149374, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38096616

RESUMEN

Cervical cancer, a common malignancy in women, poses a significant health burden worldwide. In this study, we aimed to investigate the expression, function, and potential mechanisms of NADH: ubiquinone oxidoreductase subunit A8 (NDUFA8) in cervical cancer. The Gene Expression Profiling Interactive Analysis (GEPIA) database and immunohistochemical scoring were used to analyze NDUFA8 expression in cervical cancer tissues and normal tissues. Quantitative real-time PCR and Western blot analyses were performed to assess the expression level of NDUFA8 in cervical cancer cell lines. NDUFA8 knockdown or overexpression experiments were conducted to evaluate its impact on cell proliferation and apoptosis. The mitochondrial respiratory status was analyzed by measuring cellular oxygen consumption, adenosine triphosphate (ATP) levels, and the expression levels of Mitochondrial Complex I activity, and Mitochondrial Complex IV-associated proteins Cytochrome C Oxidase Subunit 5B (COX5B) and COX6C. NDUFA8 exhibited high expression levels in cervical cancer tissues, and these levels were correlated with reduced survival rates. A significant upregulation of NDUFA8 expression was observed in cervical cancer cell lines compared to normal cells. Silencing NDUFA8 hindered cell proliferation, promoted apoptosis, and concurrently suppressed cellular mitochondrial respiration, resulting in decreased levels of available ATP. Conversely, NDUFA8 overexpression induced the opposite effects. Herein, we also found that E1A Binding Protein P300 (EP300) overexpression facilitated Histone H3 Lysine 27 (H3K27) acetylation enrichment, enhancing the activity of the NDUFA8 promoter region. NDUFA8, which is highly expressed in cervical cancer, is regulated by transcriptional control via EP300/H3K27 acetylation. By promoting mitochondrial respiration, NDUFA8 contributes to cervical cancer cell proliferation and apoptosis. These findings provide novel insights into NDUFA8 as a therapeutic target in cervical cancer.


Asunto(s)
Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/patología , Factores de Transcripción/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Apoptosis/genética , Proliferación Celular/genética , Respiración , Adenosina Trifosfato , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Proteína p300 Asociada a E1A/genética , Proteína p300 Asociada a E1A/metabolismo
5.
Eur J Clin Invest ; : e14212, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38591651

RESUMEN

BACKGROUND: Bone morphogenetic protein 9 (BMP9) is a hepatokine that plays a pivotal role in the progression of liver diseases. Moreover, an increasing number of studies have shown that BMP9 is associated with hepatopulmonary syndrome (HPS), but its role in HPS is unclear. Here, we evaluated the influence of CBDL on BMP9 expression and investigated potential mechanisms of BMP9 signalling in HPS. METHODS: We profiled the circulating BMP9 levels in common bile duct ligation-induced HPS rat model, and then investigated the effects and mechanisms of HPS rat serum on pulmonary vascular endothelial dysfunction in rat model, as well as in primarily cultured rat pulmonary microvascular endothelial cells. RESULTS: Our data revealed that circulating BMP9 levels were significantly increased in the HPS rats compared to control group. Besides, the elevated BMP9 in HPS rat serum was not only crucial for promoting endothelial cell proliferation and tube formation through the activin receptor-like kinase1 (ALK1)-Endoglin-Smad1/5/9 pathway, but also important for accumulation of monocytes. Treatments with ALK1-Fc or silencing ALK1 expression to inhibit the BMP9 signalling pathway effectively eliminated these effects. In agreement with these observations, increased circulating BMP9 was associated with an increase in lung vessel density and accumulation of pro-angiogenic monocytes in the microvasculature in HPS rats. CONCLUSIONS: This study provided evidence that elevated circulating BMP9, secreted from the liver, promote pulmonary angiogenesis in HPS rats via ALK1-Endoglin-Smad1/5/9 pathway. In addition, BMP9-regulated pathways are also involved in accumulation of pro-angiogenic monocytes in the pulmonary microvasculature in HPS rats.

6.
Cancer Cell Int ; 24(1): 69, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341584

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most common brain tumor with the worst prognosis. Temozolomide is the only first-line drug for GBM. Unfortunately, the resistance issue is a classic problem. Therefore, it is essential to develop new drugs to treat GBM. As an oncogene, Skp2 is involved in the pathogenesis of various cancers including GBM. In this study, we investigated the anticancer effect of AAA237 on human glioblastoma cells and its underlying mechanism. METHODS: CCK-8 assay was conducted to evaluate IC50 values of AAA237 at 48, and 72 h, respectively. The Cellular Thermal Shift Assay (CETSA) was employed to ascertain the status of Skp2 as an intrinsic target of AAA237 inside the cellular milieu. The EdU-DNA synthesis test, Soft-Agar assay and Matrigel assay were performed to check the suppressive effects of AAA237 on cell growth. To identify the migration and invasion ability of GBM cells, transwell assay was conducted. RT-qPCR and Western Blot were employed to verify the level of BNIP3. The mRFP-GFP-LC3 indicator system was utilized to assess alterations in autophagy flux and investigate the impact of AAA237 on the dynamic fusion process between autophagosomes and lysosomes. To investigate the effect of compound AAA237 on tumor growth in vivo, LN229 cells were injected into the brains of mice in an orthotopic model. RESULTS: AAA237 could inhibit the growth of GBM cells in vitro. AAA237 could bind to Skp2 and inhibit Skp2 expression and the degradation of p21 and p27. In a dose-dependent manner, AAA237 demonstrated the ability to inhibit colony formation, migration, and invasion of GBM cells. AAA237 treatment could upregulate BNIP3 as the hub gene and therefore induce BNIP3-dependent autophagy through the mTOR pathway whereas 3-MA can somewhat reverse this process. In vivo, the administration of AAA237 effectively suppressed the development of glioma tumors with no side effects. CONCLUSION: Compound AAA237, a novel Skp2 inhibitor, inhibited colony formation, migration and invasion of GBM cells in a dose-dependent manner and time-dependent manner through upregulating BNIP3 as the hub gene and induced BNIP3-dependent autophagy through the mTOR pathway therefore it might be a viable therapeutic drug for the management of GBM.

7.
Acta Pharmacol Sin ; 45(1): 209-222, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37749236

RESUMEN

Glioblastoma (GBM) is the most common malignant tumor in the brain with temozolomide (TMZ) as the only approved chemotherapy agent. GBM is characterized by susceptibility to radiation and chemotherapy resistance and recurrence as well as low immunological response. There is an urgent need for new therapy to improve the outcome of GBM patients. We previously reported that 3-O-acetyl-11-keto-ß-boswellic acid (AKBA) inhibited the growth of GBM. In this study we characterized the anti-GBM effect of S670, a synthesized amide derivative of AKBA, and investigated the underlying mechanisms. We showed that S670 dose-dependently inhibited the proliferation of human GBM cell lines U87 and U251 with IC50 values of around 6 µM. Furthermore, we found that S670 (6 µM) markedly stimulated mitochondrial ROS generation and induced ferroptosis in the GBM cells. Moreover, S670 treatment induced ROS-mediated Nrf2 activation and TFEB nuclear translocation, promoting protective autophagosome and lysosome biogenesis in the GBM cells. On the other hand, S670 treatment significantly inhibited the expression of SXT17, thus impairing autophagosome-lysosome fusion and blocking autophagy flux, which exacerbated ROS accumulation and enhanced ferroptosis in the GBM cells. Administration of S670 (50 mg·kg-1·d-1, i.g.) for 12 days in a U87 mouse xenograft model significantly inhibited tumor growth with reduced Ki67 expression and increased LC3 and LAMP2 expression in the tumor tissues. Taken together, S670 induces ferroptosis by generating ROS and inhibiting STX17-mediated fusion of autophagosome and lysosome in GBM cells. S670 could serve as a drug candidate for the treatment of GBM.


Asunto(s)
Neoplasias Encefálicas , Ferroptosis , Glioblastoma , Humanos , Animales , Ratones , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Autofagosomas/metabolismo , Amidas/farmacología , Transducción de Señal , Lisosomas/metabolismo , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Proteínas Qa-SNARE
8.
J Asian Nat Prod Res ; 26(1): 154-176, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38321773

RESUMEN

Glioblastoma (GBM) is the most common, malignant, and lethal primary brain tumor in adults. Up to now, the chemotherapy approaches for GBM are limited. Therefore, more studies on identifying and exploring new chemotherapy drugs or strategies overcome the GBM are essential. Natural products are an important source of drugs against various human diseases including cancers. With the better understanding of the molecular etiology of GBM, the development of new anti-GBM drugs has been increasing. Here, we summarized recent researches of natural products for the GBM therapy and their potential mechanisms in details, which will provide new ideas for the research on natural products and promote developing drugs from nature products for GBM therapy.


Asunto(s)
Productos Biológicos , Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología
9.
BMC Anesthesiol ; 23(1): 173, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217861

RESUMEN

OBJECTIVE: This study was conducted to examine the association between the A118G polymorphism of the OPRM1 gene and the risk of increased VAS scores in patients with colorectal cancer who underwent laparoscopic radical resection for which fentanyl was used. METHODS: The OPRM1 A118G genotype in subjects were detected. The relationship between the A118G polymorphism of the OPRM1 gene and increased Visual Analogue Scale (VAS) scores throughout the perioperative period was explored. A total of 101 patients receiving fentanyl anesthesia undergoing laparoscopic radical resection of colon tumors at Zhongshan Hospital, Fudan University between July 2018 and December 2020 were investigated in the present study. The relative risk between the A118G polymorphism of the OPRM1 gene and VAS ≥ 4 in the PACU was estimated using the adjusted effect relationship diagram, baseline characteristic analysis, and multiple logistic regression analysis. The relationship between the A118G polymorphism of the OPRM1 gene and VAS in the PACU, as well as perioperative fentanyl usage, was examined after confounders were adjusted. RESULTS: Subjects with OPRM1 A118G wild gene A were less sensitive to fentanyl, which was a risk factor for PACU VAS ≥ 4. Before the model was adjusted, the odds ratio (OR) was 14.73 (P = 0.001). After adjusting for age, sex, weight, height, and the duration of surgery, the OR increased to 16.55 (P = 0.001). When adjusting for age, sex, weight, height, surgery duration, COMT Val158Met gene polymorphism, CYP3A4 *1G gene polymorphism, and CYP3A5 *3gene polymorphism, the OR was 19.94 (P = 0.002). Moreover, OPRM1 A118G wild type gene A was found to be a risk factor for increased dosage of fentanyl in the PACU. Before the model was adjusted, the OR reached 16.90 (P = 0.0132). After adjusting for age, sex, body weight, intraoperative fentanyl dosage, surgery duration, and height, the OR was 13.81, (P = 0.0438). When adjusting for age, sex, weight, height, intraoperative fentanyl dosage, surgery duration, COMT Val158Met gene polymorphism, CYP3A4 *1G gene polymorphism, and CYP3A5 *3 gene polymorphism, the OR reached 15.23, (P = 0.0205). CONCLUSION: The A118G polymorphism of the OPRM1 gene carrying wild gene A was a risk factor for VAS ≥ 4 in the PACU. Moreover, it is a risk factor for increased dosage of fentanyl in the PACU.


Asunto(s)
Neoplasias Colorrectales , Laparoscopía , Humanos , Fentanilo , Citocromo P-450 CYP3A/genética , Genotipo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/cirugía , Polimorfismo de Nucleótido Simple , Analgésicos Opioides , Receptores Opioides mu/genética
10.
Small ; 18(24): e2201291, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35560977

RESUMEN

Inspired by molecular self-assemblies in nature, this article reports a versatile strategy for confined encapsulation of single-atomic metal into high-quality rGO nanosheets by the microwave-assisted emulsion micelle method. Multilayer self-assembly of organometallics-surfactants micelles into the interlayer of nanosheets can not only promote microwave exfoliation and reduction of GO but also precisely control loading and distribution of single-metal atoms. With this synthetic strategy, the simultaneous trinity of exfoliation, reduction, and composition are achieved for 1 min. Experimental results and density functional theory calculations demonstrate that graphene-supported FeN4 O2 sites exhibit optimal binding energy toward superior selective adsorption (adsorption amount of 1975.6 mg g-1 with separation efficiency of 97.6%) and electrocatalytic oxidation (TOFs as high as 1.31 min-1 ). This work provides a simple and efficient avenue for the large-scale preparation of single-atomic metal composites in environmental and energy fields.

11.
J Transl Med ; 20(1): 444, 2022 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-36184616

RESUMEN

BACKGROUND: Adrenocortical carcinoma (ACC) is an extremely rare, aggressive tumor with few effective therapeutic options or drugs. Mitotane (Mtn), which is the only authorized therapeutic drug, came out in 1970 and is still the only first-line treatment for ACC in spite of serious adverse reaction and a high recurrence rate. METHODS: By in silico analysis of the ACC dataset in the cancer genome atlas (TCGA), we determined that high expression levels of cyclin-dependent kinase-1 (CDK1) were significantly related to the adverse clinical outcomes of ACC. In vitro and in vivo experiments were performed to evaluate the role of CDK1 in ACC progression through gain and loss of function assays in ACC cells. CDK1 inhibitors were screened to identify potential candidates for the treatment of ACC. RNA sequencing, co-immunoprecipitation, and immunofluorescence assays were used to elucidate the mechanism. RESULTS: Overexpression of CDK1 in ACC cell lines promoted proliferation and induced the epithelial-to-mesenchymal transition (EMT), whereas knockdown of CDK1 expression inhibited growth of ACC cell lines. The CDK1 inhibitor, cucurbitacin E (CurE), had the best inhibitory effect with good time-and dose-dependent activity both in vitro and in vivo. CurE had a greater inhibitory effect on ACC xenografts in nude mice than mitotane, without obvious adverse effects. Most importantly, combined treatment with CurE and mitotane almost totally eliminated ACC tumors. With respect to mechanism, CDK1 facilitated the EMT of ACC cells via Slug and Twist and locked ACC cells into the G2/M checkpoint through interaction with UBE2C and AURKA/B. CDK1 also regulated pyroptosis, apoptosis, and necroptosis (PANoptosis) of ACC cells through binding with the PANoptosome in a ZBP1-dependent way. CONCLUSIONS: CDK1 could be exploited as an essential therapeutic target of ACC via regulating the EMT, the G2/M checkpoint, and PANoptosis. Thus, CurE may be a potential candidate drug for ACC therapy with good safety and efficacy, which will meet the great need of patients with ACC.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Carcinoma Corticosuprarrenal , Neoplasias de la Corteza Suprarrenal/tratamiento farmacológico , Neoplasias de la Corteza Suprarrenal/genética , Neoplasias de la Corteza Suprarrenal/metabolismo , Carcinoma Corticosuprarrenal/tratamiento farmacológico , Carcinoma Corticosuprarrenal/genética , Carcinoma Corticosuprarrenal/metabolismo , Animales , Apoptosis , Aurora Quinasa A/genética , Aurora Quinasa A/farmacología , Aurora Quinasa A/uso terapéutico , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/farmacología , División Celular , Línea Celular Tumoral , Proliferación Celular , Transición Epitelial-Mesenquimal , Humanos , Ratones , Ratones Desnudos , Mitotano/farmacología , Mitotano/uso terapéutico , Necroptosis , Piroptosis , Proteínas de Unión al ARN
12.
Pharmacol Res ; 181: 106259, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35577307

RESUMEN

Lung cancer is by far the leading cause of cancer death worldwide, and 85% of patients are diagnosed with non-small cell lung cancer (NSCLC), which is still very difficult to treat. Skp2 functions as an oncogene that participates in processes of many cancers. Here, we report a novel Skp2 inhibitor AAA-237 that binds to Skp2 protein and inhibits the proliferation of the NSCLC cells. We further investigated the anti-NSCLC mechanism of AAA-237 and found that it arrested the cell cycle at the G0/G1 phase by targeting Skp2 to reduce the degradation of p21Cip1 and p27Kip1 or by transcriptionally activating FOXO1 to increase the mRNA expression of p21Cip1 and p27Kip1. More importantly, we found that treatment of a high concentration AAA-237 could induce apoptosis of NSCLC cells and treatment of a low AAA-237 concentration for a longer time could induce senescence of NSCLC cells. Similar results were found in nude mice xenografted with A549 cells. AAA-237 inhibited tumor growth by inducing apoptosis and senescence in a dose-dependent manner. Considering these results, we propose that AAA-237 could be a promising therapeutic drug for treating patients with NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Puntos de Control del Ciclo Celular , Neoplasias Pulmonares , Proteínas Quinasas Asociadas a Fase-S , Células A549 , Animales , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Fase G1 , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Desnudos , Proteínas Quinasas Asociadas a Fase-S/antagonistas & inhibidores
13.
Pharmacol Res ; 183: 106376, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914680

RESUMEN

Apolipoprotein C1 (APOC1) has been found to play an essential part in proliferation and metastasis of numerous cancers, but related mechanism has not been elucidated, especially its function and role in tumor immunity. Through systematic pan-cancer analysis, we identified that APOC1 was closely associated with the infiltration of various immune cells in multiple cancers. Besides, APOC1 was significantly co-expressed with the immune checkpoints, major histocompatibility complex (MHC) molecules, chemokines and other immune-related genes. Furthermore, single-cell sequencing analysis suggested that the vast majority of APOC1 was expressed in macrophages or tumor-associated macrophages (TAMs). Additionally, the expression of APOC1 was significantly related to the prognosis of different cancers. Since APOC1 was most significantly abnormally expressed in renal cell cancer (RCC), subsequent experiments were carried out in RCC to explore the role of APOC1 in tumor immunity. The expression of APOC1 was significantly elevated in the tumor and serum of RCC patients. Besides, APOC1 was mainly expressed in the macrophage and it was closely related to the immune cell infiltration of RCC. Co-culture with RCC cells could induce the generation of TAMs with M2 phenotype which be blocked by silencing APOC1. The expression of APOC1 was elevated in the M2 or TAMs and APOC1 promoted M2 polarization of macrophages through interacting with CD163 and CD206. Furthermore, macrophages overexpressing APOC1 promoted the metastasis of RCC cells via secreting CCL5. Together, these data indicate that APOC1 is an immunological biomarker which regulates macrophage polarization and promotes tumor metastasis.


Asunto(s)
Apolipoproteína C-I , Carcinoma de Células Renales , Neoplasias Renales , Activación de Macrófagos , Apolipoproteína C-I/genética , Apolipoproteína C-I/metabolismo , Biomarcadores/metabolismo , Carcinoma de Células Renales/metabolismo , Humanos , Neoplasias Renales/metabolismo , Macrófagos/metabolismo , Metástasis de la Neoplasia , Microambiente Tumoral
14.
J Gastroenterol Hepatol ; 37(4): 620-631, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34907588

RESUMEN

BACKGROUND AND AIM: This study aims to systematically evaluate adherence to colonoscopy and related factors in cascade screening of colorectal cancer (CRC) among average-risk populations, which is crucial to achieve the effectiveness of CRC screening. METHODS: We searched PubMed, Embase, Web of Science, and Cochrane Library for studies published in English up to October 16, 2020, and reporting the adherence to colonoscopy following positive results of initial screening tests. A random-effects meta-analysis was applied to estimate pooled adherence and 95% confidence intervals. Subgroup analysis and mixed-effects meta-regression analysis were performed to evaluate heterogeneous factors for adherence level. RESULTS: A total of 245 observational and 97 experimental studies were included and generated a pooled adherence to colonoscopy of 76.6% (95% confidence interval: 74.1-78.9) and 80.4% (95% confidence interval: 77.2-83.1), respectively. The adherence varied substantially by calendar year of screening, continents, CRC incidence, socioeconomic status, recruitment methods, and type of initial screening tests, with the initial tests as the most modifiable heterogeneous factor for adherence across both observational (Q = 162.6, P < 0.001) and experimental studies (Q = 23.2, P < 0.001). The adherence to colonoscopy was at the highest level when using flexible sigmoidoscopy as an initial test, followed by using guaiac fecal occult blood test, quantitative or qualitative fecal immunochemical test, and risk assessment. The pooled estimate of adherence was positively associated with specificity and positive predictive value of initial screening tests, but negatively with sensitivity and positivity rate. CONCLUSIONS: Colonoscopy adherence is at a low level and differs by study-level characteristics of programs and populations. Initial screening tests with high specificity or positive predictive value may be followed by a high adherence to colonoscopy.


Asunto(s)
Neoplasias Colorrectales , Detección Precoz del Cáncer , Colonoscopía/métodos , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/epidemiología , Detección Precoz del Cáncer/métodos , Humanos , Tamizaje Masivo/métodos , Sangre Oculta , Sigmoidoscopía
15.
Acta Pharmacol Sin ; 43(10): 2709-2722, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35354963

RESUMEN

Colorectal cancer (CRC) is the third most common cancer in men and the second most common cancer in women worldwide. CRC is the second leading cause of cancer-related deaths. Although some progress in the treatment of CRC has been achieved, the molecular mechanism of CRC is still unclear. In this study, alcohol dehydrogenase 1C(ADH1C) was first identified as a target gene closely associated with the development of CRC by the comprehensive application of transcriptomics, proteomics, metabonomics and in silico analysis. The ADH1C mRNA and protein expression in CRC cell lines and tumor tissues was lower than that in normal intestinal epithelial cell lines and healthy tissues. Overexpression of ADH1C inhibited the growth, migration, invasion and colony formation of CRC cell lines and prevented the growth of xenograft tumors in nude mice. The inhibitory effects of ADH1C on CRC cells in vitro were exerted by reducing the expression of PHGDH/PSAT1 and the serine level. This inhibition could be partially reversed by adding serine to the culture medium. These results showed that ADH1C is a potential drug target in CRC.


Asunto(s)
Alcohol Deshidrogenasa , Neoplasias Colorrectales , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Neoplasias Colorrectales/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Redes y Vías Metabólicas , Ratones , Ratones Desnudos , ARN Mensajero/metabolismo , Serina/genética , Serina/metabolismo
16.
Acta Pharmacol Sin ; 43(1): 194-208, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34433903

RESUMEN

Glioblastoma multiforme (GBM) is the most malignant and lethal primary brain tumor in adults accounting for about 50% of all gliomas. The only treatment available for GBM is the drug temozolomide, which unfortunately has frequent drug resistance issue. By analyzing the hub genes of GBM via weighted gene co-expression network analysis (WGCNA) of the cancer genome atlas (TCGA) dataset, and using the connectivity map (CMAP) platform for drug repurposing, we found that multiple azole compounds had potential anti-GBM activity. When their anti-GBM activity was examined, however, only three benzimidazole compounds, i.e. flubendazole, mebendazole and fenbendazole, potently and dose-dependently inhibited proliferation of U87 and U251 cells with IC50 values below 0.26 µM. Benzimidazoles (0.125-0.5 µM) dose-dependently suppressed DNA synthesis, cell migration and invasion, and regulated the expression of key epithelial-mesenchymal transition (EMT) markers in U87 and U251 cells. Benzimidazoles treatment also dose-dependently induced the GBM cell cycle arrest at the G2/M phase via the P53/P21/cyclin B1 pathway. Furthermore, the drugs triggered pyroptosis of GBM cells through the NF-κB/NLRP3/GSDMD pathway, and might also concurrently induced mitochondria-dependent apoptosis. In a nude mouse U87 cell xenograft model, administration of flubendazole (12.5, 25, and 50 mg · kg-1 · d-1, i.p, for 3 weeks) dose-dependently suppressed the tumor growth without obvious adverse effects. Taken together, our results demonstrated that benzimidazoles might be promising candidates for the treatment of GBM.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Bencimidazoles/farmacología , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Antineoplásicos/química , Bencimidazoles/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias del Sistema Nervioso Central/metabolismo , Neoplasias del Sistema Nervioso Central/patología , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
17.
Acta Pharmacol Sin ; 43(11): 2977-2992, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35581292

RESUMEN

Glioblastoma (GBM), a malignant brain tumor, is a world-wide health problem because of its poor prognosis and high rates of recurrence and mortality. Apolipoprotein C1 (APOC1) is the smallest of apolipoproteins, implicated in many diseases. Recent studies have shown that APOC1 promotes tumorigenesis and development of several types of cancer. In this study we investigated the role of APOC1 in GBM tumorigenesis. Using in silico assays we showed that APOC1 was highly expressed in GBM tissues and its expression was closely related to GBM progression. We showed that APOC1 protein expression was markedly increased in four GBM cell lines (U251, U138, A172 and U87) compared to the normal brain glia cell lines (HEB, HA1800). In U251 cells, overexpression of APOC1 promoted cell proliferation, migration, invasion and colony information, which was reversed by APOC1 knockdown. APOC1 knockdown also markedly inhibited the growth of GBM xenografts in the ventricle of nude mice. We further demonstrated that APOC1 reduced ferroptosis by inhibiting KEAP1, promoting nuclear translocation of NRF2 and increasing expression of HO-1 and NQO1 in GBM cells. APOC1 also induced ferroptosis resistance by increasing cystathionine beta-synthase (CBS) expression, which promoted trans-sulfuration and increased GSH synthesis, ultimately leading to an increase in glutathione peroxidase-4 (GPX4). Thus, APOC1 plays a key role in GBM tumorigenesis, conferring resistance to ferroptosis, and may be a promising therapeutic target for GBM.


Asunto(s)
Apolipoproteína C-I , Ferroptosis , Glioblastoma , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Animales , Humanos , Ratones , Apolipoproteína C-I/metabolismo , Carcinogénesis/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica , Cistationina betasintasa/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones Desnudos , Factor 2 Relacionado con NF-E2/metabolismo
18.
Eur J Cancer Care (Engl) ; 31(5): e13577, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35315165

RESUMEN

OBJECTIVE: To overview the colonoscopy adherence in cascade screening of colorectal cancer (CRC) and evaluate potential influence of the initial tests based on an ecological evaluation. METHODS: The performance of the initial screening tests and adherence to subsequent colonoscopy were extracted from relevant studies published up to 16 October 2020. The age-standardised incidence (ASRi) of CRC in populations in the year of screening was derived from the Cancer Statistics. RESULTS: One hundred sixty-six observational studies and 60 experimental studies were identified. Most studies applied cascade screening with faecal occult blood tests (FOBTs) as an initial test. The adherence to colonoscopy varied greatly across populations by continents, gross national income and type of initial tests, with a median (interquartile range) of 79.8% (63.1%-87.8%) in observational studies and 82.1% (66.7%-90.4%) in randomised trials. The adherence was positively correlated with the ASRi of CRC (r = 0.145, p = 0.023) and positive predictive value (PPV) of the initial tests (r = 0.206, p = 0.002) in observational studies and correlated with ASRi of CRC (r = 0.309, p = 0.002) and sensitivity of the initial tests (r = -0.704, p = 0.003) in experimental studies. CONCLUSIONS: Adherence to colonoscopy varies greatly across populations and is related with performance of the initial tests, indicating the importance to select appropriate initial tests.


Asunto(s)
Neoplasias Colorrectales , Detección Precoz del Cáncer , Colonoscopía , Neoplasias Colorrectales/epidemiología , Estudios de Seguimiento , Humanos , Tamizaje Masivo , Estudios Observacionales como Asunto , Sangre Oculta , Ensayos Clínicos Controlados Aleatorios como Asunto
19.
J Clin Lab Anal ; 36(3): e24259, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35089611

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies with poor prognosis. There is no research about the clinical significance of serum soluble CD155 (sCD155) level for HCC. We aim to explore the prognostic and diagnostic value of sCD155 in HCC patients undergoing curative resection. METHODS: Serum sCD155 level in HCC patients was determined by enzyme-linked immunosorbent assay. The prognostic significance of sCD155 was evaluated by Cox regression and Kaplan-Meier analyses. CD155 expression and biomarkers of immune cells in HCC tissues were detected by immunohistochemistry staining. The diagnostic significance of sCD155 was evaluated using receiver operating characteristic curve. RESULTS: Serum sCD155 level was significantly increased in HCC patients and predicted poor prognosis. The prognostic value of sCD155 remained in low recurrent risk subgroups of HCC. Serum sCD155 level was positively related to CD155 expression in HCC tissues. High serum sCD155 level was associated with decreased numbers of CD8+ T cells and CD56+ NK cells and increased number of CD163+ M2 macrophages. Serum sCD155 level had better performance in distinguishing HCC patients from healthy donors and patients with chronic liver conditions than α-fetoprotein. Among patients with α-fetoprotein ≤ 20 ng/ml, serum sCD155 level could differentiate HCC patients from non-HCC patients. CONCLUSION: Serum sCD155 level represents a promising biomarker for diagnosis and prognosis of HCC. High serum sCD155 level may reflect an immunosuppressive tumor microenvironment in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores de Tumor , Linfocitos T CD8-positivos/patología , Carcinoma Hepatocelular/patología , Humanos , Neoplasias Hepáticas/patología , Pronóstico , Microambiente Tumoral
20.
Matern Child Health J ; 26(4): 778-787, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34519952

RESUMEN

PURPOSE: Black people give birth joyously despite disproportionate rates of adverse perinatal outcomes. Given that group prenatal care shows promise in mitigating these inequities, we sought to solicit the opinions of Black peripartum women on how group prenatal care could be tailored to fit their specific needs. In this study, we describe attitudes about a proposed Black group prenatal care in a single focus group of 11 Black women who receive maternal health services from Black Infant Health (BIH, a state and federal funded state-wide program for Black pregnant people with the goal to improve infant and maternal health). These data were used to design a race-conscious group prenatal care curriculum specifically for Black women at UCSF. DESCRIPTION: This study was an analysis of focus group data generated as part of a larger project focused on community involvement in Black maternal health. English speaking pregnant or recently postpartum women age 18 or older who receive services from BIH were recruited to participated in the focus group analyzed in this study. All facilitators of the focus group were Black women in order to facilitate candid conversation about racism in prenatal care. ASSESSMENT: The need for mental health care was common thread underlying all conversations about prenatal health improvements desired by our focus groups. Participants expressed the centrality of mental health access during our discussion of other themes (e.g.: ease of access, inclusion of partners, special classes for teen moms) by discussing them in terms of their relationship to mental health. Our participants' clear expression of the centrality of mental health care to their prenatal health guided our decision to focus on mental health as a necessary pillar of any group prenatal care intervention designed to mitigate perinatal healthcare disparities in this paper. Three themes related to mental health integration into group prenatal care emerged from thematic analysis of the transcripts. Participants expressed insufficient access and advocacy, and provider distrust. CONCLUSION: Evidence exists supporting group prenatal care as a tool for mitigation of perinatal health disparities among Black women. There is also a large body of data describing the disproportionate burden of mental health needs among Black women. The rich data we present here from Black women on their desire for the integration of these two needs fits well into the parallel conversation occurring in the literature. To our knowledge, this is the first study investigating desires of Black women regarding group prenatal care designed specifically for them. They expressed a strong desire for more access to mental health care providers who are racially conscious and aware of white supremacy, and nuanced opinions on the role of racial concordance in health equity.


Asunto(s)
Servicios de Salud Materna , Servicios de Salud Mental , Adolescente , Población Negra , Femenino , Disparidades en Atención de Salud , Humanos , Embarazo , Atención Prenatal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA