Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 29(16): 25859-25867, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34614905

RESUMEN

Quantum key distribution (QKD) provides information theoretically secure key exchange requiring authentication of the classic data processing channel via pre-sharing of symmetric private keys to kick-start the process. In previous studies, the lattice-based post-quantum digital signature algorithm Aigis-Sig, combined with public-key infrastructure (PKI), was used to achieve high-efficiency quantum security authentication of QKD, and we have demonstrated its advantages in simplifying the MAN network structure and new user entry. This experiment further integrates the PQC algorithm into the commercial QKD system, the Jinan field metropolitan QKD network comprised of 14 user nodes and 5 optical switching nodes, and verifies the feasibility, effectiveness and stability of the post-quantum cryptography (PQC) algorithm and advantages of replacing trusted relays with optical switching brought by PQC authentication large-scale metropolitan area QKD network. QKD with PQC authentication has potential in quantum-secure communications, specifically in metropolitan QKD networks.

2.
Yi Chuan ; 43(5): 459-472, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33972216

RESUMEN

Zi Cao is an important traditional medicinal plant resource in China. Shikonin and its derivatives, as the purple-red naphthoquinones among natural products of its roots, are commonly used clinically in the treatment of sores and skin inflammations. Over the past few decades, due to their highly effective multiple biological activities, pharmacological effects, good clinical efficacy and high utilization value, shikonin and its derivatives have attracted increasing attention of domestic and foreign researchers. For this reason, the wild plant germplasm resources have been suffering a grievous exploitation, leading to a serious threat to the habitat. With the development of the biosynthesis, molecular metabolism and biotechnology, as well as the continuous innovation of research methods on the biological activities and pharmacological effects of plant natural products, significant progress has been made in the research on the biosynthetic pathways and related regulatory genes of shikonin. The pharmacological action and its mechanism of shikonin have also been deeply elucidated, which greatly promoted the basic research and clinical application development of shikonin. In this review, we briefly introduce and analyze the classification of Zi Cao, structure and composition of natural shikonin and its biosynthesis pathway, functional genes related to the regulation of shikonin biosynthesis, and biological activities and pharmacological functions of shikonin. Finally, we address possible prospective for the trend on the future research and development of natural shikonin and its derivatives, hoping to provide a useful reference for the deep mining and development of medicinal natural products from important Chinese medicinal materials, and to promote the modern development of traditional Chinese medicine.


Asunto(s)
Productos Biológicos , Plantas Medicinales , China , Raíces de Plantas , Estudios Prospectivos
3.
Yi Chuan ; 43(5): 487-500, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33972218

RESUMEN

Low pH with aluminum (Al) toxicity are the main limiting factors affecting crop production in acidic soil. Selection of legume crops with acid tolerance and nitrogen-fixation ability should be one of the effective measures to improve soil quality and promote agricultural production. The role of the rhizosphere microorganisms in this process has raised concerns among the research community. In this study, BX10 (Al-tolerant soybean) and BD2 (Al-sensitive soybean) were selected as plant materials. Acidic soil was used as growth medium. The soil layers from the outside to the inside of the root are bulk soil (BS), rhizosphere soil at two sides (SRH), rhizosphere soil after brushing (BRH) and rhizosphere soil after washing (WRH), respectively. High-throughput sequencing of 16S rDNA amplicons of the V4 region using the Illumina MiSeq platform was performed to compare the differences of structure, function and molecular genetic diversity of rhizosphere bacterial community of different genotypes of soybean. The results showed that there was no significant difference in alpha diversity and beta diversity in rhizosphere bacterial community among the treatments. PCA and PCoA analysis showed that BRH and WRH had similar species composition, while BS and SRH also had similar species composition, which indicated that plant mainly affected the rhizosphere bacterial community on sampling compartments BRH and WRH. The composition and abundance of rhizosphere bacterial community among the treatments were then compared at different taxonomic levels. The ternary diagram of phylum level showed that Cyanobacteria were enriched in WRH. Statistical analysis showed that the roots of Al-tolerant soybean BX10 had an enrichment effect on plant growth promoting rhizobacteria (PGPR), which included Cyanobacteria, Bacteroides, Proteobacteria and some genera and species related to the function of nitrogen fixation and aluminum tolerance. The rhizosphere bacterial community from different sampling compartments of the same genotype soybean also were selectively enriched in different PGPR. In addition, the functional prediction analysis showed that there was no significant difference in the classification and abundance of COG (clusters of orthologous groups of proteins) function among different treatments. Several COGs might be directly related to nitrogen fixation, including COG0347, COG1348, COG1433, COG2710, COG3870, COG4656, COG5420, COG5456 and COG5554. Al-sensitive soybean BD2 was more likely to be enriched in these COGs than BX10 in BRH and WRH, and the possible reason remains to be further investigated in the future.


Asunto(s)
Rizosfera , Suelo , Aluminio , Raíces de Plantas , Microbiología del Suelo , Glycine max
4.
Plant Physiol ; 181(2): 743-761, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31350362

RESUMEN

Plants cope with aluminum (Al) toxicity by secreting organic acids (OAs) into the apoplastic space, which is driven by proton (H+) pumps. Here, we show that mutation of vacuolar H+-translocating adenosine triphosphatase (H+-ATPase) subunit a2 (VHA-a2) and VHA-a3 of the vacuolar H+-ATPase enhances Al resistance in Arabidopsis (Arabidopsis thaliana). vha-a2 vha-a3 mutant plants displayed less Al sensitivity with less Al accumulation in roots compared to wild-type plants when grown under excessive Al3+ Interestingly, in response to Al3+ exposure, plants showed decreased vacuolar H+ pump activity and reduced expression of VHA-a2 and VHA-a3, which were accompanied by increased plasma membrane H+ pump (PM H+-ATPase) activity. Genetic analysis of plants with altered PM H+-ATPase activity established a correlation between Al-induced increase in PM H+-ATPase activity and enhanced Al resistance in vha-a2 vha-a3 plants. We determined that external OAs, such as malate and citrate whose secretion is driven by PM H+-ATPase, increased with PM H+-ATPase activity upon Al stress. On the other hand, elevated secretion of malate and citrate in vha-a2 vha-a3 root exudates appeared to be independent of OAs metabolism and tolerance of phosphate starvation but was likely related to impaired vacuolar sequestration. These results suggest that coordination of vacuolar H+-ATPase and PM H+-ATPase dictates the distribution of OAs into either the vacuolar lumen or the apoplastic space that, in turn, determines Al tolerance capacity in plants.


Asunto(s)
Aluminio/toxicidad , Arabidopsis/metabolismo , Ácidos Carboxílicos/metabolismo , Raíces de Plantas/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Aluminio/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pirofosfatasa Inorgánica/metabolismo , Transportadores de Anión Orgánico/metabolismo , Raíces de Plantas/efectos de los fármacos , ATPasas de Translocación de Protón Vacuolares/genética
5.
Bioorg Med Chem ; 27(23): 115153, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31648877

RESUMEN

In this study, a series of shikonin derivatives combined with benzoylacrylic had been designed and synthesized, which showed an inhibitory effect on both tubulin and the epidermal growth factor receptor (EGFR). In vitro EGFR and cell growth inhibition assay demonstrated that compound PMMB-317 exhibited the most potent anti-EGFR (IC50 = 22.7 nM) and anti-proliferation activity (IC50 = 4.37 µM) against A549 cell line, which was comparable to that of Afatinib (EGFR, IC50 = 15.4 nM; A549, IC50 = 6.32 µM). Our results on mechanism research suggested that, PMMB-317 could induce the apoptosis of A549 cells in a dose- and time-dependent manner, along with decrease in mitochondrial membrane potential (MMP), production of ROS and alterations in apoptosis-related protein levels. Also, PMMB-317 could arrest cell cycle at G2/M phase to induce cell apoptosis, and inhibit the EGFR activity through blocking the signal transduction downstream of the mitogen-activated protein MAPK pathway and the anti-apoptotic kinase AKT pathway; typically, such results were comparable to those of afatinib. In addition, PMMB-317 could suppress A549 cell migration through the Wnt/ß-catenin signaling pathway in a dose-dependent manner. Additionally, molecular docking simulation revealed that, PMMB-317 could simultaneously combine with EGFR protein (5HG8) and tubulin (1SA0) through various forces. Moreover, 3D-QSAR study was also carried out, which could optimize our compound through the structure-activity relationship analysis. Furthermore, the in vitro and in vivo results had collectively confirmed that PMMB-317 might serve as a promising lead compound to further develop the potential therapeutic anticancer agents.


Asunto(s)
Acrilatos/farmacología , Antineoplásicos/farmacología , Benzoatos/farmacología , Naftoquinonas/farmacología , Moduladores de Tubulina/farmacología , Células A549 , Acrilatos/química , Acrilatos/uso terapéutico , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Benzoatos/química , Benzoatos/uso terapéutico , Diseño de Fármacos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Humanos , Ratones Desnudos , Simulación del Acoplamiento Molecular , Naftoquinonas/química , Naftoquinonas/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/uso terapéutico
6.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 41(2): 234-241, 2019 Apr 28.
Artículo en Zh | MEDLINE | ID: mdl-31060680

RESUMEN

Objective To explore the effect of hydrogen sulfide on inflammatory factors and energy metabolism of mitochondria after limbs reperfusion injury in rats. Methods Sixty rats were divided into three groups:sham operation group,control group(ischemia-reperfusion injury + saline group),and experimental group(ischemia-reperfusion injury + H2S group).Wistar rat models of limb ischemia-reperfusion injury were established.Skeletal muscle samples were collected to determine the levels of necrosis decomposition products [including myoglobin(MB),lipoprotein complex(LPC)and lipid peroxide(LPO)];blood samples were collected to determine the levels of interleukin(IL)-1,IL-6 and tumor necrosis factor-α(TNF-α);mitochondria were extracted for mitochondrial transmembrane potential measurement and ATP content detection.Statistical analysis was made on the test results. Results After ischemia reperfusion injury,the levels of MB,LPO,and LPC in skeletal muscle,liver,lung and renal tissues of the control group were significantly increased(MB:Pskeletal muscle =0.003,Pliver =0.001,Plung =0.001,Pkidney =0.001;LPO:Pskeletal muscle =0.001,Pliver =0.001,Plung =0.001,Pkidney =0.002;LPC:Pskeletal muscle =0.000,Pliver =0.002,Plung =0.002,Pkidney =0.003),and hydrogen sulfide treatment during ischemia reperfusion significantly inhibited the production of MB,LPO,and LPC(MB:Pskeletal muscle =0.021,Pliver =0.036,Plung =0.005;LPO:Pskeletal muscle =0.003,Pliver =0.008,Plung =0.010,Pkidney =0.015;LPC:Pskeletal muscle =0.002,Pliver =0.026,P lung =0.007,P kidney =0.006).Ischemia/reperfusion of lower extremity in rats resulted in increased levels of IL-1,IL-6,and TNF-α in the serum of rats,and the levels of IL-1,IL-6,and TNF-increased over time,with statistically significant differences in IL-1,IL-6,and TNF-α among groups at 3 h(IL-1:P3 h =0.019,P6 h =0.011,P9 h =0.009,$P_{12_{h}}$=0.008,and P15 h =0.002;IL-6:P3 h =0.026,P6 h =0.009,P9 h =0.002, $P_{12_{h}}$=0.002,P15 h =0.003;TNF-α:P3 h =0.002,P6 h =0.002,P9 h =0.005,$P_{12_{h}}$=0.002,P15 h =0.003).The levels of IL-1,IL-6,and TNF-α in serum were significantly inhibited during ischemia reperfusion(IL-1:P3 h =0.035,P6 h =0.039,P9 h =0.012,$P_{12_{h}}$=0.005,P15 h =0.006;IL-6:P3 h =0.042,P6 h =0.025,P9 h =0.023,$P_{12_{h}}$=0.006,P15 h =0.005;TNF-α:P3 h =0.005,P6 h =0.003,P9 h =0.022,$P_{12_{h}}$=0.005,P15 h =0.005),and such inhibitory effects became even more obvious over time.After limb ischemia and reperfusion in the control group,the mitochondrial transmembrane potential of skeletal muscle cells significantly decreased compared with that of the sham group(t=6.698;P=0.001).After hydrogen sulfide treatment,the mitochondrial membrane potential energy of the experimental group was significantly higher than that of the control group(t=7.507,P = 0.000).The ATP level in the mitochondria of ischemia reperfusion rats in the control group was significantly lower than that in the sham group(t=7.526,P = 0.000).The content of mitochondrial ATP in the experimental group was significantly higher than that in the control group after hydrogen sulfide treatment(t=8.604,P = 0.000). Conclusions Hydrogen sulfide can alleviate the injury of skeletal muscle and distal organs after limb ischemia-reperfusion and reduce local inflammatory reaction.In addition,it is valuable in alleviating mitochondrial transmembrane potential and energy metabolism disorders during reperfusion injury.


Asunto(s)
Sulfuro de Hidrógeno/farmacología , Enfermedades Mitocondriales/patología , Daño por Reperfusión , Animales , Metabolismo Energético , Inflamación/metabolismo , Interleucina-6/metabolismo , Ratas , Ratas Wistar , Factor de Necrosis Tumoral alfa/metabolismo
7.
Curr Genomics ; 19(1): 36-49, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29491731

RESUMEN

BACKGROUND: The worldwide use of glyphosate has dramatically increased, but also has been raising concern over its impact on mineral nutrition, plant pathogen, and soil microbiota. To date, the bulk of previous studies still have shown different results on the effect of glyphosate application on soil rhizosphere microbial communities. OBJECTIVE: This study aimed to clarify whether glyphosate has impact on nitrogen-fixation, pathogen or disease suppression, and rhizosphere microbial community of a soybean EPSPS-transgenic line ZUTS31 in one growth season. METHOD: Comparative analysis of the soil rhizosphere microbial communities was performed by 16S rRNA gene amplicons sequencing and shotgun metagenome sequencing analysis between the soybean line ZUTS31 foliar sprayed with diluted glyphosate solution and those sprayed with water only in seed-filling stage. RESULTS: There were no significant differences of alpha diversity but with small and insignificant difference of beta diversity of soybean rhizosphere bacteria after glyphosate treatment. The significantly enriched Gene Ontology (GO) terms were cellular, metabolic, and single-organism of biological process together with binding, catalytic activity of molecular function. The hits and gene abundances of some functional genes being involved in Plant Growth-Promoting Traits (PGPT), especially most of nitrogen fixation genes, significantly decreased in the rhizosphere after glyphosate treatment. CONCLUSION: Our present study indicated that the formulation of glyphosate-isopropylamine salt did not significantly affect the alpha and beta diversity of the rhizobacterial community of the soybean line ZUTS31, whereas it significantly influenced some functional genes involved in PGPT in the rhizosphere during the single growth season.

8.
Chem Biodivers ; 15(11): e1800289, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30194898

RESUMEN

A number of podophyllotoxin derivatives (3A-3J) had been designed and synthesized, and their biological activities were evaluated in this study. Moreover, the antiproliferation activities of these compounds against four human cancer cell lines (HepG2, HeLa, A549, and MCF-7) were also tested. The results indicated that the most promising compound 3D displayed potent inhibitory activity over the four human cancer cell lines and was further demonstrated to have potent tubulin polymerization inhibitory effects without damaging the non-cancer cells. Additionally, 3D was verified to effectively interfere with tubulin and could prevent the mitosis of cancer cells, leading to cell cycle arrest and eventually inducing apoptosis in a dose- and time-dependent manner. Moreover, the Western blotting and siRNA results showed that Bcl-2 was downregulated in HepG2 cells treated with 3D. Finally, the molecular docking simulation results revealed that 3D could fit well in the colchicine-binding pocket. Taken together, this study has provided certain novel antitubulin agents for possible cancer chemotherapy.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Podofilotoxina/farmacología , Tubulina (Proteína)/metabolismo , Antineoplásicos Fitogénicos/síntesis química , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Podofilotoxina/síntesis química , Podofilotoxina/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
9.
BMC Plant Biol ; 17(1): 198, 2017 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-29132307

RESUMEN

BACKGROUND: Shikonin is a naphthoquinone secondary metabolite with important medicinal value and is found in Lithospermum erythrorhizon. Considering the limited knowledge on the membrane transport mechanism of shikonin, this study investigated such molecular mechanism. RESULTS: We successfully isolated an ATP-binding cassette protein gene, LeMDR, from L. erythrorhizon. LeMDR is predominantly expressed in L. erythrorhizon roots, where shikonin accumulated. Functional analysis of LeMDR by using the yeast cell expression system revealed that LeMDR is possibly involved in the shikonin efflux transport. The accumulation of shikonin is lower in yeast cells transformed with LeMDR-overexpressing vector than that with empty vector. The transgenic hairy roots of L. erythrorhizon overexpressing LeMDR (MDRO) significantly enhanced shikonin production, whereas the RNA interference of LeMDR (MDRi) displayed a reverse trend. Moreover, the mRNA expression level of LeMDR was up-regulated by treatment with shikonin and shikonin-positive regulators, methyl jasmonate and indole-3-acetic acid. There might be a relationship of mutual regulation between the expression level of LeMDR and shikonin biosynthesis. CONCLUSIONS: Our findings demonstrated the important role of LeMDR in transmembrane transport and biosynthesis of shikonin.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Lithospermum/metabolismo , Naftoquinonas/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transporte Biológico , Southern Blotting , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Genes de Plantas/fisiología , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Análisis de Secuencia de ADN
10.
Bioorg Med Chem Lett ; 27(17): 4066-4074, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28757065

RESUMEN

In this paper, a series of podophyllotoxin piperazine acetate ester derivatives were synthesized and investigated due to their antiproliferation activity on different human cancer cell lines. Among the congeners, C5 manifested prominent cytotoxicity towards the cancer cells, without causing damage on the non-cancer cells through inhibiting tubulin assembly and having high selectively causing damage on the human breast (MCF-7) cell line (IC50=2.78±0.15µM). Treatments of MCF-7 cells with C5 resulted in cell cycle arrest in G2/M phase and microtubule network disruption. Moreover, regarding the expression of cell cycle relative proteins CDK1, a protein required for mitotic initiation was up-regulated. Besides, Cyclin A, Cyclin B1 and Cyclin D1 proteins were down-regulated. Meanwhile, it seems that the effect of C5 on MCF-7 cells apoptosis inducing was observed to be not obvious enough. In addition, docking analysis demonstrated that the congeners occupy the colchicine binding pocket of tubulin.


Asunto(s)
Acetatos/farmacología , Antineoplásicos/farmacología , Diseño de Fármacos , Ésteres/farmacología , Piperazinas/farmacología , Podofilotoxina/farmacología , Tubulina (Proteína)/metabolismo , Acetatos/síntesis química , Acetatos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Ésteres/síntesis química , Ésteres/química , Humanos , Células MCF-7 , Estructura Molecular , Piperazina , Piperazinas/síntesis química , Piperazinas/química , Podofilotoxina/síntesis química , Podofilotoxina/química , Polimerizacion/efectos de los fármacos , Relación Estructura-Actividad
11.
Acta Pharmacol Sin ; 38(10): 1381-1393, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28504248

RESUMEN

The flavonoid quercetin exhibits significant anticancer activities with few side effects. In the current study, we characterized TL-2-8, a quercetin derivative, as a novel anticancer agent in vitro and in vivo. Cell proliferation and viability were assessed using Cell Counting Kit-8 and CellTiter-Blue assay, respectively. Cell death was examined using PI staining or a TUNEL assay. Mitophagy was determined by measuring autophagic flux and by confocal imaging. Protein expression was examined by Western blotting. We found that TL-2-8 selectively inhibited the proliferation and decreased the viability of various cancer cells (the anti-proliferation IC50 values in MDA-MB-231, MDA-MB-468 and MCF-7 breast cancer cells at 72 h were 8.28, 8.56, and 9.58 µmol/L, respectively), and it displayed only slight cytotoxicity against normal MCF-10A and HEK-293 cells. In MDA-MB-231 and MDA-MB-468 breast cancer cells, TL-2-8 treatment induced the degradation of multiple Hsp90 client proteins without inducing Hsp70. TL-2-8 (3, 6, 12 µmol/L) dose-dependently inhibited the expression of AHA1, an activator of Hsp90 ATPase, and decreased Hsp90-AHA1 complex formation, leading to decreased Hsp90 chaperone function and reduced polo-like kinase 1 (PLK1) signaling. Consequently, impaired mitophagy was induced via the downregulation of lysosomal-associated membrane protein 2 (LAMP2). The in vivo anticancer effects of TL-2-8 were evaluated in an MDA-MB-231 breast cancer xenograft model, which was treated with TL-2-8 (25, 50, 100 mg·kg-1·d-1, po). Administration of TL-2-8 resulted in tumor growth inhibition rates of 37.9%, 58.9% and 70.9%, respectively, whereas quercetin treatment (100 mg·kg-1·d-1, po) produced only a lower tumor growth inhibition rate (49.5%). Furthermore, TL-2-8 treatment significantly extended the lifespan of mice bearing MDA-MB-231 breast cancer cell xenografts. Our results demonstrate that TL-2-8 induces significant cell death and immature mitophagy in breast cancer cells in vitro and in vivo via AHA1 abrogation.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Flavonoides/farmacología , Animales , Antineoplásicos/administración & dosificación , Neoplasias de la Mama/patología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Femenino , Células HEK293 , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Etiquetado Corte-Fin in Situ , Concentración 50 Inhibidora , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mitofagia/efectos de los fármacos , Chaperonas Moleculares/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Clin Exp Pharmacol Physiol ; 44(12): 1192-1200, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28732106

RESUMEN

It is well-accepted that inflammation plays an important role in the development of cardiac remodelling and that therapeutic approaches targeting inflammation can inhibit cardiac remodelling. Although a large amount of evidence indicates that activation of α7 nicotinic acetylcholine receptor (α7nAChR) causes an anti-inflammatory effect, the role of α7nAChR in cardiac remodelling and the underlying mechanism have not been established. To investigate the effect of the specific α7nAChR agonist, PNU282987, on cardiac remodelling induced by isoproterenol (ISO 60 mg/kg per day) in mice, the cardiomyocyte cross-sectional area (CSA) and collagen volume fraction were evaluated by hematoxylin and eosin (HE) and Masson staining, respectively. Cardiac function and ventricular wall thickness were measured by echocardiography. The protein expressions of collagen I, matrix metalloproteinase 9 (MMP-9), transforming growth factor ß1 (TGF-ß1), and Smad3 were analyzed by Western blot. ISO-induced cardiac hypertrophy, characterized by an increase in the heart weight/body weight ratio, CSA and ventricular wall thickness. Moreover, cardiac fibrosis indices, such as collagen volume fraction, MMP-9 and collagen I protein expression, were also increased by ISO. PNU282987 not only attenuated cardiac hypertrophy but also decreased the cardiac fibrosis induced by ISO. Furthermore, PNU282987 suppressed TGF-ß1 protein expression and the phosphorylation of Smad3 induced by ISO. In conclusion, PNU282987 ameliorated the cardiac remodelling induced by ISO, which may be related to the TGF-ß1/Smad3 pathway. These data imply that the α7nAChR may represent a novel therapeutic target for cardiac remodelling in many cardiovascular diseases.


Asunto(s)
Benzamidas/uso terapéutico , Compuestos Bicíclicos con Puentes/uso terapéutico , Cardiomegalia/tratamiento farmacológico , Agonistas Nicotínicos/uso terapéutico , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Remodelación Ventricular/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Animales , Benzamidas/administración & dosificación , Compuestos Bicíclicos con Puentes/administración & dosificación , Cardiomegalia/metabolismo , Cardiomegalia/patología , Isoproterenol/farmacología , Masculino , Ratones Endogámicos BALB C , Miocardio/metabolismo , Miocardio/patología , Agonistas Nicotínicos/administración & dosificación , Transducción de Señal
13.
Pharmacol Res ; 104: 86-96, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26723906

RESUMEN

COX-2 has long been exploited in the treatment of inflammation and relief of pain; however, research increasingly suggests COX-2 inhibitors might possess potential benefits to thwart tumour processes. In the present study, we designed a series of novel COX-2 inhibitors based on analysis of known inhibitors combined with an in silico scaffold modification strategy. A docking simulation combined with a primary screen in vitro were performed to filter for the lead compound, which was then substituted, synthesized and evaluated by a variety of bioassays. Derivative 4d was identified as a potent COX-2 enzyme inhibitor and exerted an anticancer effect through COX-2 inhibition. Further investigation confirmed that 4d could induce A549 cell apoptosis and arrest the cell cycle at the G2/M phase. Moreover, treatment with 4d reduced A549 cell adhesive ability and COX-2 expression. The morphological variation of treated cells was also visualized by confocal microscopy. Overall, the biological profile of 4d suggests that this compound may be developed as a potential anticancer agent.


Asunto(s)
Antineoplásicos , Inhibidores de la Ciclooxigenasa 2 , Sulfonamidas , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/síntesis química , Inhibidores de la Ciclooxigenasa 2/farmacología , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Sulfonamidas/síntesis química , Sulfonamidas/farmacología
14.
Bioorg Med Chem Lett ; 26(14): 3237-3242, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27262599

RESUMEN

In this study, we designed and synthesized eighteen podophyllotoxin-norcantharidin hybrid drugs which could exhibit more potent anti-cancer activity than the parent drugs. Through the anti-proliferation assay, the most potent anti-cancer agent was screened out, namely Q9 (IC50=0.88±0.18µM against MCF-7 cell line), and it showed lower cytotoxicity against non-cancer cells, human embryonic kidney cells (293T) (IC50=54.38±3.78µM). Additionally, based on the flow cytometry analysis result, it can cause a remarkable cell cycle arrest at G2/M phase and induce apoptosis in MCF-7 cells more significantly than podophyllotoxin or norcantharidin per se. Moreover, the expression of cell cycle relative protein CDK1 was up regulated while a protein required for mitotic initiation, Cyclin B1 was down regulated. Furthermore, according to the confocal microscopy observation results, it was shown that Q9 was a potent tubulin polymerization inhibitor and the effect is comparable to that of colchicine. For further investigation on the aforementioned mechanisms, we performed western blot experiments, thus finding the increase of the cleavage of PARP. Consistent with these new findings, molecular docking observations suggested that compound Q9 could be developed as a potential anticancer agent.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Diseño de Fármacos , Podofilotoxina/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HEK293 , Humanos , Células MCF-7 , Estructura Molecular , Podofilotoxina/química , Relación Estructura-Actividad
15.
Int J Mol Sci ; 17(2): 219, 2016 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-26861313

RESUMEN

The revelation of mechanisms of photodynamic therapy (PDT) at the cellular level as well as singlet oxygen (¹O2) as a second messengers requires the quantification of intracellular ¹O2. To detect singlet oxygen, directly measuring the phosphorescence emitted from ¹O2 at 1270 nm is simple but limited for the low quantum yield and intrinsic efficiency of ¹O2 emission. Another method is chemically trapping ¹O2 and measuring fluorescence, absorption and Electron Spin Resonance (ESR). In this paper, we used indocyanine green (ICG), the only near-infrared (NIR) probe approved by the Food and Drug Administration (FDA), to detect ¹O2 in vitro. Once it reacts with ¹O2, ICG is decomposed and its UV absorption at 780 nm decreases with the laser irradiation. Our data demonstrated that ICG could be more sensitive and accurate than Singlet Oxygen Sensor Green reagent(®) (SOSG, a commercialized fluorescence probe) in vitro, moreover, ICG functioned with Eosin Y while SOSG failed. Thus, ICG would reasonably provide the possibility to sense ¹O2 in vitro, with high sensitivity, selectivity and suitability to most photosensitizers.


Asunto(s)
Colorantes Fluorescentes , Verde de Indocianina , Rayos Infrarrojos , Oxígeno Singlete/análisis , Fotoquimioterapia , Fármacos Fotosensibilizantes , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Espectrofotometría Ultravioleta
16.
J Cell Physiol ; 230(4): 767-74, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25201632

RESUMEN

Previous findings have shown that acetylcholine (ACh) decreased hypoxia-induced tumor necrosis factor alpha (TNF α) production, thus protected against cardiomyocyte injury. However, whether and how ACh affects TNF α-induced endoplasmic reticulum (ER) stress and cell apoptosis remain poorly defined. This study was aimed at determining the effect of ACh in H9c2 cells after TNF α stimulation. Presence of ER stress was verified using the ER stress protein markers glucose regulatory protein 78 (GRP78) and C/EBP homologous protein (CHOP). Cell apoptosis was shown by caspase-3 activation and terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling. Exogenously administered ACh significantly decreased these TNF α-induced changes. Moreover, when the cells were exposed to nonspecific muscarinic receptor (M AChR) inhibitor atropine, methoctramine (M2 AChR inhibitor) or the epidermal growth factor receptor (EGFR) inhibitor AG1478, the cardioprotection elicited by ACh was diminished. Furthermore, the above effects were also blocked by M2 AChR or EGFR siRNA, indicating that EGFR transactivation by M2 AChR may be the major pathway responsible for the benefits of ACh. In addition, LY294002, a phosphatidylinositol-3-kinase (PI3K) inhibitor, displayed the similar trends as AG1478, suggesting that PI3K/Akt signaling may be the downstream of EGFR in ACh-elicited anti-apoptotic property. Together, these data indicate that EGFR-PI3K/Akt signaling is involved in M2 AChR-mediated ER apoptotic pathway suppression and the subsequent survival of H9c2 cardiomyocytes. We have identified a novel pathway underlying the cardioprotection afforded by ACh.


Asunto(s)
Apoptosis , Retículo Endoplásmico/metabolismo , Receptores ErbB/metabolismo , Miocitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Acetilcolina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Cromonas/farmacología , Retículo Endoplásmico/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Morfolinas/farmacología , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
17.
Cell Physiol Biochem ; 36(5): 2025-38, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26202362

RESUMEN

BACKGROUND: Excessive activation of matrix metalloproteinase 9 (MMP-9) has been found in several inflammatory diseases. Previous studies have shown that acetylcholine (ACh) reduced the levels of pro-inflammatory cytokines and decreased tissue damage. Therefore, this study was designed to explore the potential effects and mechanisms of ACh on MMP-9 production and cell migration in response to lipopolysaccharide (LPS) stimulation in RAW264.7 cells. METHODS: MMP-9 expression and activity were induced by LPS in RAW264.7 cells, and examined by real-time PCR, western blotting and gelatin zymography, respectively. ELISA was used to determine the changes in MMP-9 secretion among the groups. Macrophage migration was evaluated using transwell migration assay. Knockdown of α7 nicotinic acetylcholine receptor (α7 nAChR) expression was performed using siRNA transfection. RESULTS: Pre-treatment with ACh inhibited LPS-induced MMP-9 production and macrophage migration in RAW264.7 cells. These effects were abolished by the α7 nAChR antagonist methyllycaconitine (MLA) and α7 nAChR siRNA. The α7 nAChR agonist PNU282987 was found to have an effect similar to that of ACh. Moreover, ACh enhanced the expression of JAK2 and STAT3, and the JAK2 inhibitor AG490 and the STAT3 inhibitor static restored the effect of ACh. Meanwhile, ACh decreased the phosphorylation and nuclear translocation of NF-κB, and this effect was abrogated in the presence of MLA. In addition, the JAK2 and STAT3 inhibitor abolished the inhibitory effects of ACh on phosphorylation of NF-κB. CONCLUSIONS: Activation of α7 nAChR by ACh inhibited LPS-induced MMP-9 production and macrophage migration through the JAK2/STAT3 signaling pathway. These results provide novel insights into the anti-inflammatory effects and mechanisms of ACh.


Asunto(s)
Acetilcolina/farmacología , Movimiento Celular/efectos de los fármacos , Janus Quinasa 2/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/biosíntesis , Factor de Transcripción STAT3/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Línea Celular , Macrófagos/enzimología , Macrófagos/metabolismo , Ratones
18.
J Pharmacol Sci ; 127(4): 481-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25922231

RESUMEN

The Ca(2+)-sensing receptor (CaSR) plays an important role in regulating vascular tone. In the present study, we investigated the positive effects of the vagal neurotransmitter acetylcholine by suppressing CaSR activation in mesenteric arteries exposed to hypoxia/reoxygenation (H/R). The artery rings were exposed to a modified 'ischemia mimetic' solution and an anaerobic environment to simulate an H/R model. Our results showed that acetylcholine (10(-6) mol/L) significantly reduced the contractions induced by KCl and phenylephrine and enhanced the endothelium-dependent relaxation induced by acetylcholine. Additionally, acetylcholine reduced CaSR mRNA expression and activity when the rings were subjected to 4 h of hypoxia and 12 h of reoxygenation. Notably, the CaSR antagonist NPS2143 significantly reduced the contractions but did not improve the endothelium-dependent relaxation. When a contractile response was achieved with extracellular Ca(2+), both acetylcholine and NPS2143 reversed the H/R-induced abnormal vascular vasoconstriction, and acetylcholine reversed the calcimimetic R568-induced abnormal vascular vasoconstriction in the artery rings. In conclusion, this study suggests that acetylcholine ameliorates the dysfunctional vasoconstriction of the arteries after H/R, most likely by decreasing CaSR expression and activity, thereby inhibiting the increase in intracellular calcium concentration. Our findings may be indicative of a novel mechanism underlying ACh-induced vascular protection.


Asunto(s)
Acetilcolina/farmacología , Arterias Mesentéricas , Neurotransmisores/farmacología , Oxígeno/metabolismo , Receptores Sensibles al Calcio/antagonistas & inhibidores , Daño por Reperfusión/genética , Daño por Reperfusión/prevención & control , Animales , Calcio/metabolismo , Expresión Génica/efectos de los fármacos , Técnicas In Vitro , Masculino , Naftalenos/farmacología , Fenilefrina/farmacología , Cloruro de Potasio/farmacología , Ratas Sprague-Dawley , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismo , Vasoconstricción/efectos de los fármacos , Vasodilatación/efectos de los fármacos
19.
Chirality ; 27(3): 274-80, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25663187

RESUMEN

In this study, a shikonin ester derivative, compound , was selected to evaluate its anticancer activities and we found that compound exhibited better antitubulin activities against the human HepG2 cell line with an IC50 value of 1.097 µM. Furthermore, the inhibition of tubulin polymerization results indicated that compound demonstrated the most potent antitubulin activity (IC50 = 13.88), which was compared with shikonin and colchicine as positive controls (IC50 = 25.28 µM and 22.56 µM), respectively. Compound was simulated to have good binding site with tubulin and arrested the cell cycle at G2/M phase, which also induces apoptosis in HepG2 cells, in which P53 and members of Bcl-2 protein family were both involved in the progress of apoptosis revealed by western blot. Confocal microscopy observations revealed compound targeted tubulin and altered its polymerization by interfering with microtubule organization. Based on these results, compound functions as a potent anticancer agent targeting tubulin.


Asunto(s)
Antineoplásicos/farmacología , Naftoquinonas/farmacología , Moduladores de Tubulina/farmacología , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Concentración 50 Inhibidora , Microtúbulos/química , Microtúbulos/efectos de los fármacos , Simulación del Acoplamiento Molecular
20.
BMC Complement Altern Med ; 15: 389, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26508316

RESUMEN

BACKGROUND: Liver fibrosis is a feature in the majority of chronic liver diseases and oxidative stress is considered to be its main pathogenic mechanism. Antioxidants including vitamin E, are effective in preventing liver fibrogenesis. Several plant-drived antioxidants, such as silymarin, baicalin, beicalein, quercetin, apigenin, were shown to interfere with liver fibrogenesis. The antioxidans above are polyphenols, flavonoids or structurally related compounds which are the main chemical components of Pomegranate peels and seeds, and the antioxidant activity of Pomegranate peels and seeds have been verified. Here we investigated whether the extracts of pomegranate peels (EPP) and seeds (EPS) have preventive efficacy on liver fibrosis induced by carbon tetrachloride (CCl4) in rats and explored its possible mechanisms. METHODS: The animal model was established by injection with 50 % CCl4 subcutaneously in male wistar rats twice a week for four weeks. Meanwhile, EPP and EPS were administered orally every day for 4 weeks, respectively. The protective effects of EPP and EPS on biochemical metabolic parameters, liver function, oxidative markers, activities of antioxidant enzymes and liver fibrosis were determined in CCl4-induced liver toxicity in rats. RESULTS: Compared with the sham group, the liver function was worse in CCl4 group, manifested as increased levels of serum alanine aminotransferase, aspartate aminotransferase and total bilirubin. EPP and EPS treatment significantly ameliorated these effects of CCl4. EPP and EPS attenuated CCl4-induced increase in the levels of TGF-ß1, hydroxyproline, hyaluronic acid laminin and procollagen type III. They also restored the decreased superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activities and inhibited the formation of lipid peroxidized products in rats treated with CCl4. CONCLUSION: The EPP and EPS have protective effects against liver fibrosis induced by CCl4, and its mechanisms might be associated with their antioxidant activity, the ability of decreasing the level of TGF-ß1 and inhibition of collagen synthesis.


Asunto(s)
Cirrosis Hepática/prevención & control , Hígado/efectos de los fármacos , Lythraceae/química , Extractos Vegetales/farmacología , Animales , Biomarcadores/metabolismo , Tetracloruro de Carbono , Modelos Animales de Enfermedad , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Pruebas de Función Hepática , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Semillas/química , Bazo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA