Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 18(1): 322, 2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-30509163

RESUMEN

BACKGROUND: Nitrogen (N) is a macronutrient that is essential for optimal plant growth and seed yield. Allotetraploid rapeseed (AnAnCnCn, 2n = 4x = 38) has a higher requirement for N fertilizers whereas exhibiting a lower N use efficiency (NUE) than cereal crops. N limitation adaptation (NLA) is pivotal for enhancing crop NUE and reducing N fertilizer use in yield production. Therefore, revealing the genetic and molecular mechanisms underlying NLA is urgent for the genetic improvement of NUE in rapeseed and other crop species with complex genomes. RESULTS: In this study, we integrated physiologic, genomic and transcriptomic analyses to comprehensively characterize the adaptive strategies of oilseed rape to N limitation stresses. Under N limitations, we detected accumulated anthocyanin, reduced nitrate (NO3-) and total N concentrations, and enhanced glutamine synthetase activity in the N-starved rapeseed plants. High-throughput transcriptomics revealed that the pathways associated with N metabolism and carbon fixation were highly over-represented. The expression of the genes that were involved in efficient N uptake, translocation, remobilization and assimilation was significantly altered. Genome-wide identification and molecular characterization of the microR827-NLA1-NRT1.7 regulatory circuit indicated the crucial role of the ubiquitin-mediated post-translational pathway in the regulation of rapeseed NLA. Transcriptional analysis of the module genes revealed their significant functional divergence in response to N limitations between allotetraploid rapeseed and the model Arabidopsis. Association analysis in a rapeseed panel comprising 102 genotypes revealed that BnaC5.NLA1 expression was closely correlated with the rapeseed low-N tolerance. CONCLUSIONS: We identified the physiologic and genome-wide transcriptional responses of oilseed rape to N limitation stresses, and characterized the global members of the BnamiR827-BnaNLA1s-BnaNRT1.7s regulatory circuit. The transcriptomics-assisted gene co-expression network analysis accelerates the rapid identification of central members within large gene families of plant species with complex genomes. These findings would enhance our comprehensive understanding of the physiologic responses, genomic adaptation and transcriptomic alterations of oilseed rape to N limitations and provide central gene resources for the genetic improvement of crop NLA and NUE.


Asunto(s)
Brassica rapa/metabolismo , Nitrógeno/deficiencia , Adaptación Fisiológica , Antocianinas/metabolismo , Brassica rapa/genética , Brassica rapa/fisiología , Regulación de la Expresión Génica de las Plantas , Glutamato-Amoníaco Ligasa/metabolismo , Nitratos/metabolismo , Nitrógeno/metabolismo , Tetraploidía
2.
PLoS One ; 13(12): e0208648, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30571734

RESUMEN

The Chloride Channel (CLC) gene family is reported to be involved in vacuolar nitrate (NO3-) transport. Nitrate distribution to the cytoplasm is beneficial for enhancing NO3- assimilation and plays an important role in the regulation of nitrogen (N) use efficiency (NUE). In this study, genomic information, high-throughput transcriptional profiles, and gene co-expression analysis were integrated to identify the CLCs (BnaCLCs) in Brassica napus. The decreased NO3- concentration in the clca-2 mutant up-regulated the activities of nitrate reductase and glutamine synthetase, contributing to increase N assimilation and higher NUE in Arabidopsis thaliana. The genome-wide identification of 22BnaCLC genes experienced strong purifying selection. Segmental duplication was the major driving force in the expansion of the BnaCLC gene family. The most abundant cis-acting regulatory elements in the gene promoters, including DNA-binding One Zinc Finger, W-box, MYB, and GATA-box, might be involved in the transcriptional regulation of BnaCLCs expression. High-throughput transcriptional profiles and quantitative real-time PCR results showed that BnaCLCs responded differentially to distinct NO3- regimes. Transcriptomics-assisted gene co-expression network analysis identified BnaA7.CLCa-3 as the core member of the BnaCLC family, and this gene might play a central role in vacuolar NO3- transport in crops. The BnaCLC members also showed distinct expression patterns under phosphate depletion and cadmium toxicity. Taken together, our results provide comprehensive insights into the vacuolar BnaCLCs and establish baseline information for future studies on BnaCLCs-mediated vacuolar NO3- storage and its effect on NUE.


Asunto(s)
Proteínas de Transporte de Anión/genética , Brassica rapa/genética , Canales de Cloruro/genética , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Vacuolas/genética , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica rapa/metabolismo , Cadmio/metabolismo , Canales de Cloruro/metabolismo , Secuencia Conservada , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Glutamato-Amoníaco Ligasa/metabolismo , Nitrato-Reductasa/metabolismo , Transportadores de Nitrato , Nitratos/metabolismo , Nitrógeno/metabolismo , Fosfatos/metabolismo , Filogenia , Fitomejoramiento , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Estrés Fisiológico/fisiología , Transcripción Genética , Vacuolas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA