Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Angew Chem Int Ed Engl ; 63(10): e202318544, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38194267

RESUMEN

Antigen-presenting cells (APCs) play a crucial role in the anti-tumor immunity as they are responsible for capturing, processing, and presenting tumor antigens to T cells. However, their activation is often limited by the absence of adjuvants and the suppressive effects of immune checkpoints, such as CD47-SIRPα. Herein, we present a nanoadjuvant that is self-assembled from long RNA building blocks generated through rolling circle transcription (RCT) reaction and further modified with cationic liposomes. Owing to the high load of densely packed RNA, this nanoadjuvant could robustly activate RIG-I/MDA5 signaling in APCs, leading to the maturation of dendritic cells (DCs) and the polarization of tumor-associated macrophages (TAMs) toward an anti-tumor M1-like phenotype. In addition, with a well-designed template, the generated long RNA from RCT reaction includes two kinds of siRNA targeting both CD47 in tumor cells and SIRPα in APCs. This dual gene silencing results in efficient inhibition of the CD47-SIRPα checkpoint. Collectively, the robust activation of RIG-I/MDA5 signaling and efficient inhibition of CD47-SIRPα checkpoint enhance the phagocytic activity of APCs, which in turn promotes the cross-priming of effector T cells and the activation of anti-tumor immune responses. This study therefore provides a simple and robust RNA nanoadjuvant for cancer immunotherapy.


Asunto(s)
Neoplasias , Fagocitosis , Humanos , Macrófagos , ARN Interferente Pequeño/farmacología , Antígeno CD47 , Inmunoterapia/métodos , Neoplasias/patología
2.
Molecules ; 28(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36838702

RESUMEN

Cationic, water-soluble benzophenothiaziniums have been recognized as effective type I photosensitizers (PSs) against hypoxic tumor cells. However, the study of the structure-property relationship of this type of PS is still worth further exploration to achieve optimized photodynamic effects and minimize the potential side effects. Herein, we synthesized a series of benzophenothiazine derivatives with minor N-alkyl alteration to study the effects on the structure-property relationships. The cellular uptake, subcellular organelle localization, reactive oxygen species (ROS) generation, and photocytotoxicity performances were systematically investigated. NH2NBS and EtNBS specifically localized in lysosomes and exhibited high toxicity under light with a moderate phototoxicity index (PI) due to the undesirable dark toxicity. However, NMe2NBS with two methyl substitutions accumulated more in mitochondria and displayed an excellent PI value with moderate light toxicity and negligible dark toxicity. Without light irradiation, NH2NBS and EtNBS could induce lysosomal membrane permeabilization (LMP), while NMe2NBS showed no obvious damage to lysosomes. After irradiation, NH2NBS and EtNBS were released from lysosomes and relocated into mitochondria. All compounds could induce mitochondria membrane potential (MMP) loss and nicotinamide adenine dinucleotide phosphate (NADPH) consumption under light to cause cell death. NMe2NBS exhibited remarkable in vivo photodynamic therapy (PDT) efficacy in a xenograft mouse tumor (inhibition rate, 89%) with no obvious side effects. This work provides a valuable methodology to investigate the structure-property relationships of benzophenothiazine dyes, which is of great importance in the practical application of PDT against hypoxia tumor cells.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Humanos , Animales , Ratones , Fármacos Fotosensibilizantes/farmacología , Fenotiazinas , Alquilación , Fotoquimioterapia/métodos , Línea Celular Tumoral
3.
Molecules ; 28(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36903474

RESUMEN

Biothiols, including glutathione (GSH), homocysteine (Hcy) and cysteine (Cys), play crucial roles in various physiological processes. Though an array of fluorescent probes have been designed to visualize biothiols in living organisms, few one-for-all imaging agents for sensing biothiols with fluorescence and photoacoustic imaging capabilities have been reported, since instructions for synchronously enabling and balancing every optical imaging efficacy are deficient. Herein, a new near-infrared thioxanthene-hemicyanine dye (Cy-DNBS) has been constructed for fluorescence and photoacoustic imaging of biothiols in vitro and in vivo. Upon treatment with biothiols, the absorption peak of Cy-DNBS shifted from 592 nm to 726 nm, resulting in a strong NIR absorption as well as a subsequent turn-on PA signal. Meanwhile, the fluorescence intensity increased instantaneously at 762 nm. Then, Cy-DNBS was successfully utilized for imaging endogenous and exogenous biothiols in HepG2 cells and mice. In particular, Cy-DNBS was employed for tracking biothiols upregulation in the liver of mice triggered by S-adenosyl methionine by means of fluorescent and photoacoustic imaging methods. We expect that Cy-DNBS serves as an appealing candidate for deciphering biothiols-related physiological and pathological processes.


Asunto(s)
Cisteína , Neoplasias , Animales , Ratones , Colorantes Fluorescentes , Espectrometría de Fluorescencia , Imagen Óptica/métodos , Hígado , Glutatión , Homocisteína
4.
Angew Chem Int Ed Engl ; 62(24): e202303010, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37040149

RESUMEN

cGAS-STING-mediated DNA sensing is demonstrated to be critical for launching antitumor immunity. However, DNA-based cGAS-STING agonists are rarely reported owing to low cell permeability, poor biostability and, especially, limited length of exogenous DNA. Here, we present a virus-like particle which is self-assembled from long DNA building blocks generated through rolling-circle amplification (RCA) and covered with cationic liposomes. Based on long and densely packed DNA structure, it could efficiently induce liquid phase condensation of cGAS and activate STING signaling to produce inflammatory cytokines. Moreover, this virus-like particle could also trigger the formation of AIM2 inflammasome to induce gasdermin D-mediated pyroptosis, boosting antitumor immunity. Thus, this study provides a simple and robust strategy for cancer immunotherapy for clinical application. This is the first study to report the intrinsic immunogenicity of RCA products, thus facilitating their biomedical applications.


Asunto(s)
Inflamasomas , Neoplasias , Humanos , Piroptosis , Nucleotidiltransferasas , ADN , Neoplasias/terapia , Inmunoterapia , Proteínas de Unión al ADN
5.
Anal Chem ; 94(51): 17904-17912, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36480812

RESUMEN

Ferroptosis is of great importance in physiological and pathological processes, which is associated with various inflammation-related diseases, cardiovascular diseases, and even cancer. Ferroptosis can cause abnormal change of reactive oxygen species (ROS) in mitochondria. Hypochlorous acid (HClO) acts as a typical ROS. Therefore, it is needed to study the relationship between mitochondrial morphology and HClO changes during ferroptosis at the subcellular level. To this end, a near-infrared-excitation/emission fluorescent probe, HD-Br-1, for rapid detection of mitochondrial HClO was developed based on the specific oxidative cleavage of the N,N-dimethylthiocarbamate moiety. The fluctuation in mitochondrial HClO content and the change in mitochondrial morphology during ferroptosis were monitored in real time by super-resolution imaging. In addition, HD-Br-1 was successfully applied to monitor exogenous and endogenous mitochondrial HClO during cell ferroptosis and visualize tumor to discriminate from healthy tissues. Therefore, we believe that HD-Br-1 could provide a valuable approach for the detection of mitochondrial HClO in cancer cells as well as for understanding the ferroptosis mechanism and early diagnosis of cancers associated with ferroptosis for future research.


Asunto(s)
Ferroptosis , Colorantes Fluorescentes , Microscopía Fluorescente/métodos , Ácido Hipocloroso , Mitocondrias
6.
Chemistry ; 28(72): e202202680, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36170107

RESUMEN

Organelle-targeted type I photodynamic therapy (PDT) shows great potential to overcome the hypoxic microenvironment in solid tumors. The endoplasmic reticulum (ER) is an indispensable organelle in cells with important biological functions. When the ER is damaged due to the production of reactive oxygen species (ROS), the accumulation of misfolded proteins will interfere with ER homeostasis, resulting in ER stress. Here, an ER-targeted benzophenothiazine-based photosensitizer NBS-ER was presented. ER targeting modification significantly reduced the dark toxicity and improved phototoxicity index (PI). NBS-ER could effectively produce O2 - ⋅ with near-infrared irradiation, making its phototoxicity under hypoxia close to that under normoxia. Meanwhile, the photoinduced ROS triggered ER stress and induced apoptosis. In addition, NBS-ER possessed excellent photodynamic therapeutic effect in 4T1-tumor-bearing mice.


Asunto(s)
Neoplasias , Fotoquimioterapia , Animales , Ratones , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Fotoquimioterapia/métodos , Retículo Endoplásmico/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Hipoxia/metabolismo , Línea Celular Tumoral , Microambiente Tumoral
7.
Inorg Chem ; 60(24): 18567-18574, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34826221

RESUMEN

Specimen differences, tissue-dependent background fluorescence and scattering, and deviated specimen position and sensor concentration make optical imaging for labile copper fluctuation in animals questionable, and a signal comparison between specimens is infeasible. We proposed ratiometric optical imaging as an alternative to overcome these disadvantages, and a near-infrared (NIR) ratiometric sensor, BDPS1, was devised therefore by conjugating boron dipyrromethene (BODIPY) with 4-aminostyrene and modifying the 4-amino group as a Cu+ chelator. BDPS1 possessed an excitation ratiometric copper-sensing ability to show the ratio of NIR emission (710 nm) upon excitation at 600 nm to that at 660 nm, Fex600/Fex660, increasing from 2.8 to 10.7. This sensor displayed still the opposite copper response of its internal charge transfer (ICT; 670 nm) and local (581 nm) emission bands. Ratiometric imaging with this sensor disclosed a higher labile copper region near the nucleus apparatus, and HEK-293T cells were more sensitive to copper incubation than MCF-7 cells. Dual excitation ratiometric imaging with this sensor realized tracking of labile copper fluctuation in mice, and the whole-body imaging found that tail intravenous injection of CUTX-101, a therapeutical agent for Menkes disease, led to a distinct labile copper increase in the upper belly. The ex vivo imaging of the resected viscera of mice revealed that CUTX-101 injection enhanced the labile copper level in the liver, intestine, lung, and gall bladder in sequence, yet the kidney, heart, and spleen showed almost no response. This study indicated that modifying BODIPY as an extended ICT fluorophore, with its electron-donating group being derived as a metal chelator, is an effective design rationale of NIR ratiometric sensors for copper tracking in vivo/ex vivo.


Asunto(s)
Porfobilinógeno/análogos & derivados , Boro
8.
Adv Sci (Weinh) ; 11(12): e2307870, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38233204

RESUMEN

For tumor treatment, the ultimate goal in tumor therapy is to eliminate the primary tumor, manage potential metastases, and trigger an antitumor immune response, resulting in the complete clearance of all malignant cells. Tumor microenvironment (TME) refers to the local biological environment of solid tumors and has increasingly become an attractive target for cancer therapy. Neutrophils within TME of gastric cancer (GC) spontaneously undergo ferroptosis, and this process releases oxidized lipids that limit T cell activity. Enhanced photodynamic therapy (PDT) mediated by di-iodinated IR780 (Icy7) significantly increases the production of reactive oxygen species (ROS). Meanwhile, neutrophil ferroptosis can be triggered by increased ROS generation in the TME. In this study, a liposome encapsulating both ferroptosis inhibitor Liproxstatin-1 and modified photosensitizer Icy7, denoted LLI, significantly inhibits tumor growth of GC. LLI internalizes into MFC cells to generate ROS causing immunogenic cell death (ICD). Simultaneously, liposome-deliver Liproxstatin-1 effectively inhibits the ferroptosis of tumor neutrophils. LLI-based immunogenic PDT and neutrophil-targeting immunotherapy synergistically boost the anti-PD-1 treatment to elicit potent TME and systemic antitumor immune response with abscopal effects. In conclusion, LLI holds great potential for GC immunotherapy.


Asunto(s)
Ferroptosis , Fotoquimioterapia , Quinoxalinas , Compuestos de Espiro , Neoplasias Gástricas , Humanos , Neutrófilos , Liposomas , Especies Reactivas de Oxígeno , Microambiente Tumoral
9.
Chem Sci ; 14(5): 1234-1243, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36756327

RESUMEN

Near-infrared (NIR) dyes are widely used in the field of in vivo phototheranostics. Hemicyanine dyes (HDs) have recently received tremendous attention due to their easy synthesis and excellent NIR features. However, HDs can easily form non-fluorescent aggregates and their potential for phototherapy still needs further exploration due to their poor ability to generate reactive oxygen species (ROS). Herein, a series of hemicyanine dyes with different chalcogen atom (O, S, Se) substitutions were constructed to achieve optimized potential for phototheranostics. By replacing O with the heavy atom Se in the xanthene skeleton, CySe-NEt2 showed much more favourable features such as extended NIR absorption/emission wavelength, boosted 1O2 generation rate and higher photothermal effect. In addition, a poly(ethylene glycol) (PEG) group was introduced into the scaffold and yielded a nanotheranostic agent CySe-mPEG5K, which easily formed nanoparticles with appealing features such as excellent photostability, effective prevention of unpleasant H-aggregation, fast/selective tumor accumulation and minimum dark toxicity. Solid tumor growth was significantly suppressed through combined photodynamic therapy (PDT) and photothermal therapy (PTT) guided by NIR fluorescence (NIRF) and photoacoustic (PA) imaging. This study not only presents the first example of selenium-substituted hemicyanine dyes, but also offers a reliable design strategy for the development of potent NIR phototheranostic agents with multi-mode imaging-guided combination therapeutic ability.

10.
Front Pharmacol ; 13: 927609, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35734408

RESUMEN

The endoplasmic reticulum (ER) is the main storage site of Zn2+, and Zn2+ plays an important role in regulating ER homeostasis. Therefore, we designed and synthesized a ratiometric fluorescent Zn2+ probe ER-Zn targeting ER stress. The probe displayed a specific Zn2+ induced blue shift at the spectral maximum values of excitation (80 nm) and emission (30 nm). The ratio imaging capability of Zn2+ under dual excitation mode can be applied not only to quantitative and reversible detection of exogenous Zn2+, but also the observation of the Zn2+ level change under ER stress, elucidating the different behaviors of Zn2+ release in ER stimulated by tunicamycin and thapsigargin. Additionally, the NIR imaging capability of ER-Zn provides an important basis for further research on animal models and is expected to realize the visualization and treatment of ER stress-related diseases through the regulation of ER stress by Zn2+. We envision that this probe can be applied to screen drugs for diseases related to ER stress regulation.

11.
J Mater Chem B ; 10(28): 5422-5429, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35775616

RESUMEN

Cellular dysregulated pH and mitochondrial metabolism are commonly two central factors for solid tumour progression. pH regulation and long-term mitochondrial tracking provide a great opportunity for tumour treatment. pH probes with suitable pKa and satisfactory mitochondria-immobilizing character are demanded for tumour recognition and therapy. Here, we report a ratiometric fluorescent probe, CouDa, for pH imaging in mitochondria and tumour tissue. CouDa displays an obvious blue-shifted emission (about 160 nm) in alkaline environment, with a pKa around 7.4 suitable for monitoring mitochondrial pH change. NMR and MS data confirmed an addition reaction mechanism of OH- upon the positively charged conjugated structure of hemicyanine fluorophore. Mitochondrial immobilization and acidification monitoring were realized by CouDa in cells treated with a mitochondrial uncoupler. Moreover, CouDa could distinguish acidified tumour tissue in living mice. Comparing with its analogue, the pH-sensitivity and mitochondria-immobilizing property are attributed to a hydrophobic long alkyl chain on indolium N atom. This work provides an effective strategy to track nucleophilic substances in dysfunctional mitochondria.


Asunto(s)
Colorantes Fluorescentes , Mitocondrias , Animales , Colorantes Fluorescentes/química , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Ratones , Mitocondrias/metabolismo
12.
Nat Commun ; 13(1): 2179, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35449133

RESUMEN

Golgi apparatus (GA) oxidative stress induced by in situ reactive oxygen species (ROS) could severely damage the morphology and function of GA, which may open up an avenue for effective photodynamic therapy (PDT). However, due to the lack of effective design strategy, photosensitizers (PSs) with specific GA targeting ability are in high demand and yet quite challenging. Herein, we report an aggregation-induced emission luminogen (AIEgen) based PS (TPE-PyT-CPS) that can effectively target the GA via caveolin/raft mediated endocytosis with a Pearson correlation coefficient up to 0.98. Additionally, the introduction of pyrene into TPE-PyT-CPS can reduce the energy gap between the lowest singlet state (S1) and the lowest triplet state (T1) (ΔEST) and exhibits enhanced singlet oxygen generation capability. GA fragmentation and cleavage of GA proteins (p115/GM130) are observed upon light irradiation. Meanwhile, the apoptotic pathway is activated through a crosstalk between GA oxidative stress and mitochondria in HeLa cells. More importantly, GA targeting TPE-T-CPS show better PDT effect than its non-GA-targeting counterpart TPE-PyT-PS, even though they possess very close ROS generation rate. This work provides a strategy for the development of PSs with specific GA targeting ability, which is of great importance for precise and effective PDT.


Asunto(s)
Neoplasias , Fotoquimioterapia , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo
13.
Nat Commun ; 12(1): 2772, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33986258

RESUMEN

Reversible NIR luminescent probes with negligible photocytotoxicity are required for long-term tracking of cycling hypoxia in vivo. However, almost all of the reported organic fluorescent hypoxia probes reported until now were irreversible. Here we report a reversible arylazo-conjugated fluorescent probe (HDSF) for cycling hypoxia imaging. HDSF displays an off-on fluorescence switch at 705 nm in normoxia-hypoxia cycles. Mass spectroscopic and theoretical studies confirm that the reversible sensing behavior is attributed to the two electron-withdrawing trifluoromethyl groups, which stabilizes the reduction intermediate phenylhydrazine and blocks the further reductive decomposition. Cycling hypoxia monitoring in cells and zebrafish embryos is realized by HDSF using confocal imaging. Moreover, hypoxic solid tumors are visualized and the ischemia-reperfusion process in mice is monitored in real-time. This work provides an effective strategy to construct organic fluorescent probes for cycling hypoxia imaging and paves the way for the study of cycling hypoxia biology.


Asunto(s)
Hipoxia de la Célula/fisiología , Colorantes Fluorescentes/química , Neoplasias/diagnóstico por imagen , Imagen Óptica/métodos , Análisis de la Célula Individual/métodos , Animales , Línea Celular Tumoral , Femenino , Humanos , Isquemia/diagnóstico por imagen , Células MCF-7 , Ratones , Ratones Endogámicos ICR , Microscopía Confocal , Daño por Reperfusión/diagnóstico por imagen , Pez Cebra/embriología
14.
Chem Sci ; 11(40): 11037-11041, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34123194

RESUMEN

Monitoring labile Zn2+ homeostasis is of great importance for the study of physiological functions of Zn2+ in biological systems. Here we report a novel ratiometric fluorescent Zn2+ sensor, CPBT, which was constructed based on chelation-induced alteration of FRET efficiency. CPBT was readily cell membrane permeable and showed a slight preferential localization in the endoplasmic reticulum. With this sensor, 3D ratiometric Zn2+ imaging was first realized in the head of zebra fish larvae via Z-stack mode. CPBT could track labile Zn2+ in a large number of cells through ratiometric flow cytometric assay. More interestingly, both ratiometric fluorescence imaging and flow cytometric assay demonstrated that the labile Zn2+ level in MCF-7 cells (cisplatin-sensitive) decreased while that in SKOV3 cells (cisplatin-insensitive) increased after cisplatin treatment, indicating that Zn2+ may play an important role in cisplatin induced signaling pathways in these cancer cells.

15.
ACS Nano ; 13(12): 14426-14436, 2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31799834

RESUMEN

As the cleaners of cells, lysosomes play an important role in circulating organic matter within cells, recovering damaged organelles, and removing waste via endocytosis. Because lysosome dysfunction is associated with various diseases-lysosomal storage diseases, inherited diseases, rheumatoid arthritis, and even shock-it is vital to monitor the movement of lysosomes in cells and in vivo. To that purpose, a method of optical imaging, super-resolution imaging technology (e.g., SIM and STORM), can overcome the limitations of traditional optical imaging and afford a range of possibilities for fluorescence imaging. However, the short wavelength excitation and easy photobleaching of super-resolution fluorescence probes somewhat problematize super-resolution imaging. As described herein, we designed a low-toxicity, photostable, near-infrared small molecule fluorescence probe HD-Br for use in the super-resolution imaging of lysosomes. The interaction of lysosomes and mitochondria was dynamically traced while using the probe's properties to label the lysosomes. Because the probe has the optimal near-infrared excitation and emission wavelengths, liver organoid 3D imaging and Caenorhabditis elegans imaging were also performed. Altogether, our findings indicate valuable approaches and techniques for super-resolution 3D and in vivo imaging.


Asunto(s)
Rayos Infrarrojos , Lisosomas/metabolismo , Nanopartículas/química , Organoides/metabolismo , Animales , Caenorhabditis elegans/fisiología , Endocitosis , Colorantes Fluorescentes/química , Células HeLa , Humanos , Hígado/diagnóstico por imagen , Mitofagia , Soluciones , Espectrometría de Fluorescencia , Imagen de Lapso de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA