Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 60(20): 15659-15666, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34590478

RESUMEN

The fractional oxidation state [M(dmit)2] (dmit2- = 2-thioxo-1, 3-dithiole-4, 5-dithiolate) salts have long attracted attention in the molecular metal area owing to high conductivity and even superconductivity. In this study, we achieved a mixed-valence salt (1) of [Ni(dmit)2]0.5- with monovalent 1,3-N,N-dimethyl-imidazolium (DiMIm+) by a solvent evaporation approach under ambient conditions. The mixed valence of [Ni(dmit)2]0.5- has been characterized by an analysis of the IR spectrum and crystal structure. In the crystal structure of 1, two [Ni(dmit)2]0.5- anions overlap in an eclipsed mode to form a [Ni(dmit)2]21- dimer, featuring a radical bearing an S = 1/2 spin; the dimeric radicals stack into a column along the b axis, and the adjacent columns connect together via the lateral-to-lateral S···S contacts along the a axis, and through the head-to-head S···S contacts along the [101] direction. Salt 1 shows the magnetic behavior of an S = 1/2 Heisenberg antiferromagnetic uniform linear chain with J/kB = -47.5(4) K and a semiconducting feature with σ = 2.52 × 10-3 S cm-1 at 293 K, 2.32 × 10-2 S cm-1 at 373 K, and Ea = 0.22 eV, as well as broadband photoconductivity under irradiation of green and white lights. This study suggests the possibility of designing new photoconductors based on the mixed-valence [Ni(dmit)2]0.5- salt.

2.
Dalton Trans ; 49(30): 10638-10644, 2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32697201

RESUMEN

The zero/negative thermal expansion (ZTE/NTE), which is an intriguing physical property of solids, has been observed in a few families of materials. ZTE materials possess practical applications in specific circumstances such as space-related applications, engineering structures and precision instrument. Generally, NTE materials are used as additives to form a composite of the ZTE material with positive thermal expansion material. It is still a tremendous challenge to design new families of ZTE/NTE materials. Herein, we presented a temperature-dependent single crystal structure analysis in 110-300 K for a layered (NH4)2V3O8, which crystallizes in a tetragonal space group P4bm and comprises mixed valence [V3O82-]∞ monolayers and NH4+ residual in the interlayer spaces. Along the c-axis, (NH4)2V3O8 demonstrated uniaxial expansion behaviors, i.e., ZTE with αc = -1.10 × 10-6 K-1 in 110-170 K and NTE with αc = -16.25 × 10-6 K-1 in 170-220 K. Along the a-axis, (NH4)2V3O8 exhibited ZTE with αa = + 2.06 × 10-6 K-1 in 240-300 K. The mechanisms of ZTE and NTE were explored using structural analysis. The conduction of NH4+ ions in the interlayer space was studied, indicating that the conductivity rapidly rises with the expansion of interlayer space at temperatures of >293 K. This study discloses that layered vanadates are promising ZTE/NTE materials.

3.
ACS Appl Mater Interfaces ; 12(25): 28129-28138, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32469195

RESUMEN

The emerging organic ion plastic crystals (OIPCs) are the most promising candidates used as solid-state electrolytes in a range of ionic devices. To endow an OIPC with additional functionality may create a new type of material for multifunctional devices. Herein, we present an ion plastic crystal, [EMIm][Ni(mnt)2] (1; [EMIm]+ = 1-ethyl-3-methylimidazolium and mnt2- = maleonitriledithiolate), and its crystal consists of twin dimeric chains of [Ni(mnt)2]- anions, embraced by [EMIm]+ cations. A crystal-to-plastic crystal transformation with a large latent heat that occurred at ∼367/337 K on heating/cooling is confirmed by the differential scanning calorimetry (DSC) technique. The plastic crystal phase in 1, characterized by variable temperature powder X-ray diffraction (PXRD) and optical microscopy images, spans a broad temperature range with ΔT ∼123/153 K on heating/cooling (DSC measurement), and the wide ΔT is relevant to an extra stable anion chain owing to the strong antiferromagnetic (AFM) interactions protecting the chain from collapse in the plastic crystal state. 1 is a single-component ion plastic crystal with a record high ion conductivity, 0.21 S·cm-1, at 453 K. The crystal-to-plastic crystal transformation in 1 is coupled to a bistable magnetic transition to give a multi-in-one multifunctional material. This study provides a creative thought for the design of OIPCs with striking thermal, electrical, and magnetic multifunctionality.

4.
Chem Commun (Camb) ; 56(3): 462-465, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31825446

RESUMEN

In this study, a multi-step phase transition hybrid composed of (Pr-dabco)2Ag4I6 clusters (Pr-dabco+ = 1-propyl-1,4-diazabicyclo[2.2.2]octan-1-ium) has been prepared and characterized by microanalysis, IR and UV-vis spectroscopy, TG and DSC techniques, etc. This hybrid is thermally stable up to ∼486 K with five phases in the temperature region below 486 K. The phase transition shows symmetry breaking (SB) character between phases II (space group P21/c) and III (space group Pa3[combining macron]), while inverse symmetry breaking (ISB) between phases II and I (space group Pbca), and it is rather exceptional for matter to exhibit simultaneously SB and ISB nature in two successive phase transitions. Most importantly, each phase transition is associated with a dielectric anomaly, and phase V appears to be a plastic crystal with extra high ac conductivity (>10-2 S cm-1). Our work opens up new avenues to find a multi-phase transition material in silver halide hybrids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA