RESUMEN
Transfusion of red blood cells (RBCs) is one of the most valuable and widespread treatments in modern medicine. Lifesaving RBC transfusions are facilitated by the cold storage of RBC units in blood banks worldwide. Currently, RBC storage and subsequent transfusion practices are performed using simplistic workflows. More specifically, most blood banks follow the "first-in-first-out" principle to avoid wastage, whereas most healthcare providers prefer the "last-in-first-out" approach simply favoring chronologically younger RBCs. Neither approach addresses recent advances through -omics showing that stored RBC quality is highly variable depending on donor-, time-, and processing-specific factors. Thus, it is time to rethink our workflows in transfusion medicine taking advantage of novel technologies to perform RBC quality assessment. We imagine a future where lab-on-a-chip technologies utilize novel predictive markers of RBC quality identified by -omics and machine learning to usher in a new era of safer and precise transfusion medicine.
Asunto(s)
Conservación de la Sangre , Procedimientos Analíticos en Microchip , Transfusión Sanguínea/instrumentación , Transfusión Sanguínea/métodos , Humanos , Conservación de la Sangre/métodos , Dispositivos Laboratorio en un Chip , Eritrocitos , Aprendizaje AutomáticoRESUMEN
The process of aging manifests from a highly interconnected network of biological cascades resulting in the degradation and breakdown of every living organism over time. This natural development increases risk for numerous diseases and can be debilitating. Academic and industrial investigators have long sought to impede, or potentially reverse, aging in the hopes of alleviating clinical burden, restoring functionality, and promoting longevity. Despite widespread investigation, identifying impactful therapeutics has been hindered by narrow experimental validation and the lack of rigorous study design. In this review, we explore the current understanding of the biological mechanisms of aging and how this understanding both informs and limits interpreting data from experimental models based on these mechanisms. We also discuss select therapeutic strategies that have yielded promising data in these model systems with potential clinical translation. Lastly, we propose a unifying approach needed to rigorously vet current and future therapeutics and guide evaluation toward efficacious therapies.
Asunto(s)
Envejecimiento , Longevidad , Humanos , Modelos Biológicos , Modelos Teóricos , RejuvenecimientoRESUMEN
FOXA factors are critical members of the developmental gene regulatory network (GRN) composed of master transcription factors (TF) which regulate murine cell fate and metabolism in the gut and liver. How FOXA factors dictate human liver cell fate, differentiation, and simultaneously regulate metabolic pathways is poorly understood. Here, we aimed to determine the role of FOXA2 (and FOXA1 which is believed to compensate for FOXA2) in controlling hepatic differentiation and cell metabolism in a human hepatic cell line (HepG2). siRNA mediated knockdown of FOXA1/2 in HepG2 cells significantly downregulated albumin (p < .05) and GRN TF gene expression (HNF4α, HEX, HNF1ß, TBX3) (p < .05) and significantly upregulated endoderm/gut/hepatic endoderm markers (goosecoid [GSC], FOXA3, and GATA4), gut TF (CDX2), pluripotent TF (NANOG), and neuroectodermal TF (PAX6) (p < .05), all consistent with partial/transient reprograming. shFOXA1/2 targeting resulted in similar findings and demonstrated evidence of reversibility of phenotype. RNA-seq followed by bioinformatic analysis of shFOXA1/2 knockdown HepG2 cells demonstrated 235 significant downregulated genes and 448 upregulated genes, including upregulation of markers for alternate germ layers lineages (cardiac, endothelial, muscle) and neurectoderm (eye, neural). We found widespread downregulation of glycolysis, citric acid cycle, mitochondrial genes, and alterations in lipid metabolism, pentose phosphate pathway, and ketogenesis. Functional metabolic analysis agreed with these findings, demonstrating significantly diminished glycolysis and mitochondrial respiration, with concomitant accumulation of lipid droplets. We hypothesized that FOXA1/2 inhibit the initiation of human liver differentiation in vitro. During human pluripotent stem cells (hPSC)-hepatic differentiation, siRNA knockdown demonstrated de-differentiation and unexpectedly, activation of pluripotency factors and neuroectoderm. shRNA knockdown demonstrated similar results and activation of SOX9 (hepatobiliary). These results demonstrate that FOXA1/2 controls hepatic and developmental GRN, and their knockdown leads to reprogramming of both differentiation and metabolism, with applications in studies of cancer, differentiation, and organogenesis.
Asunto(s)
Hígado , Células Madre Pluripotentes , Humanos , Ratones , Animales , Diferenciación Celular/fisiología , Hígado/metabolismo , Línea Celular , ARN Interferente Pequeño/metabolismo , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismoRESUMEN
Alcohol-related liver disease (ALD) accounts for the majority of cirrhosis and liver-related deaths worldwide. Activation of IFN-regulatory factor (IRF3) initiates alcohol-induced hepatocyte apoptosis, which fuels a robust secondary inflammatory response that drives ALD. The dominant molecular mechanism by which alcohol activates IRF3 and the pathways that amplify inflammatory signals in ALD remains unknown. Here we show that cytoplasmic sensor cyclic guanosine monophosphate-adenosine monophosphate (AMP) synthase (cGAS) drives IRF3 activation in both alcohol-injured hepatocytes and the neighboring parenchyma via a gap junction intercellular communication pathway. Hepatic RNA-seq analysis of patients with a wide spectrum of ALD revealed that expression of the cGAS-IRF3 pathway correlated positively with disease severity. Alcohol-fed mice demonstrated increased hepatic expression of the cGAS-IRF3 pathway. Mice genetically deficient in cGAS and IRF3 were protected against ALD. Ablation of cGAS in hepatocytes only phenocopied this hepatoprotection, highlighting the critical role of hepatocytes in fueling the cGAS-IRF3 response to alcohol. We identified connexin 32 (Cx32), the predominant hepatic gap junction, as a critical regulator of spreading cGAS-driven IRF3 activation through the liver parenchyma. Disruption of Cx32 in ALD impaired IRF3-stimulated gene expression, resulting in decreased hepatic injury despite an increase in hepatic steatosis. Taken together, these results identify cGAS and Cx32 as key factors in ALD pathogenesis and as potential therapeutic targets for hepatoprotection.
Asunto(s)
Uniones Comunicantes/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Hepatopatías Alcohólicas/metabolismo , Nucleotidiltransferasas/metabolismo , Adulto , Animales , Apoptosis , Femenino , Hepatocitos/metabolismo , Humanos , Hígado/citología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Nucleotidiltransferasas/genética , Transducción de SeñalRESUMEN
Autofluorescence of blood has been explored as a label free approach for detection of cell types, as well as for diagnosis and detection of infection, cancer, and other diseases. Although blood autofluorescence is used to indicate the presence of several physiological abnormalities with high sensitivity, it often lacks disease specificity due to use of a limited number of fluorophores in the detection of several abnormal conditions. In addition, the measurement of autofluorescence is sensitive to the type of sample, sample preparation, and spectroscopy method used for the measurement. Therefore, while current blood autofluorescence detection approaches may not be suitable for primary clinical diagnosis, it certainly has tremendous potential in developing methods for large scale screening that can identify high risk groups for further diagnosis using highly specific diagnostic tests. This review discusses the source of blood autofluorescence, the role of spectroscopy methods, and various applications that have used autofluorescence of blood, to explore the potential of blood autofluorescence in biomedical research and clinical applications.
Asunto(s)
Fenómenos Fisiológicos Sanguíneos , Sangre/diagnóstico por imagen , Imagen Óptica , Animales , Investigación Biomédica , Colorantes Fluorescentes , Humanos , RatonesRESUMEN
Liver tissue engineering aims to create transplantable liver grafts that can serve as substitutes for donor's livers. One major challenge in creating a fully functional liver tissue has been to recreate the biliary drainage in an engineered liver construct through integration of bile canaliculi (BC) with the biliary ductular network that would enable the clearance of bile from the hepatocytes to the host duodenum. In this study, we show the formation of such a hepatic microtissue by coculturing rat primary hepatocytes with cholangiocytes and stromal cells. Our results indicate that within the spheroids, hepatocytes maintained viability and function for up to 7 days. Viable hepatocytes became polarized by forming BC with the presence of tight junctions. Morphologically, hepatocytes formed the core of the spheroids, while cholangiocytes resided at the periphery forming a monolayer microcysts and tubular structures extending outward. The spheroids were subsequently cultured in clusters to create a higher order ductular network resembling hepatic lobule. The cholangiocytes formed functional biliary ductular channels in between hepatic spheroids that were able to collect, transport, and secrete bile. Our results constitute the first step to recreate hepatic building blocks with biliary drainage for repopulating the whole liver scaffolds to be used as transplantable liver grafts.
Asunto(s)
Conductos Biliares/metabolismo , Hepatocitos/metabolismo , Esferoides Celulares/metabolismo , Ingeniería de Tejidos , Animales , Conductos Biliares/citología , Células Cultivadas , Hepatocitos/citología , Hígado , Ratas , Esferoides Celulares/citologíaRESUMEN
A novel engineering strategy to improve autoantibody detection with peptide fragments derived from the parent antigen is presented. The model system studied was the binding of the putative p53 TAD peptide antigen (residues 46-55) to its cognate anti-p53 antibody, ab28. Each engineered peptide contained the full decapeptide epitope and differed only in the flanking regions. Since minimal structural information was available to guide the design, a simple epitope:paratope binding model was applied. The Hidden Symmetry Model, which we recently reported, was used to guide peptide design and estimate per-residue contributions to interaction free energy as a function of added C- and N-terminal flanking peptides. Twenty-four peptide constructs were designed, synthesized, and assessed for binding affinity to ab28 by surface plasmon resonance, and a subset of these peptides were evaluated in a simulated immunoassay for limit of detection. Many peptides exhibited over 200-fold enhancements in binding affinity and improved limits of detection. The epitope was reevaluated and is proposed to be the undecapeptide corresponding to residues 45-55. HSymM calculated binding free energy and experimental data were found to be in good agreement (R2 > 0.75).
Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos/inmunología , Fragmentos de Péptidos/inmunología , Ingeniería de Proteínas , Proteína p53 Supresora de Tumor/inmunología , Anticuerpos Monoclonales/química , Antígenos/química , Humanos , Epítopos Inmunodominantes , Fragmentos de Péptidos/química , Conformación Proteica , Proteína p53 Supresora de Tumor/químicaRESUMEN
Oxygen is vital to the function of all tissues including the liver and lack of oxygen, that is, hypoxia can result in both acute and chronic injuries to the liver in vivo and ex vivo. Furthermore, a permanent oxygen gradient is naturally present along the liver sinusoid, which plays a role in the metabolic zonation and the pathophysiology of liver diseases. Accordingly, here, we introduce an in vitro microfluidic platform capable of actively creating a series of oxygen concentrations on a single continuous microtissue, ranging from normoxia to severe hypoxia. This range approximately captures both the physiologically relevant oxygen gradient generated from the portal vein to the central vein in the liver, and the severe hypoxia occurring in ischemia and liver diseases. Primary rat hepatocytes cultured in this microfluidic platform were exposed to an oxygen gradient of 0.3-6.9%. The establishment of an ascending hypoxia gradient in hepatocytes was confirmed in response to the decreasing oxygen supply. The hepatocyte viability in this platform decreased to approximately 80% along the hypoxia gradient. Simultaneously, a progressive increase in accumulation of reactive oxygen species and expression of hypoxia-inducible factor 1α was observed with increasing hypoxia. These results demonstrate the induction of distinct metabolic and genetic responses in hepatocytes upon exposure to an oxygen (/hypoxia) gradient. This progressive hypoxia-on-a-chip platform can be used to study the role of oxygen and hypoxia-associated molecules in modeling healthy and injured liver tissues. Its use can be further expanded to the study of other hypoxic tissues such as tumors as well as the investigation of drug toxicity and efficacy under oxygen-limited conditions.
Asunto(s)
Hepatocitos/metabolismo , Hipoxia/metabolismo , Dispositivos Laboratorio en un Chip , Hepatopatías/metabolismo , Oxígeno/metabolismo , Animales , Células Cultivadas , Hígado/citología , Hígado/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Tissue engineering scaffolds are intended to provide mechanical and biological support for cells to migrate, engraft and ultimately regenerate the tissue. Development of scaffolds with sustained delivery of growth factors and chemokines would enhance the therapeutic benefits, especially in wound healing. In this study, we incorporated our previously designed therapeutic particles, composed of fusion of elastin-like peptides (ELPs) as the drug delivery platform to keratinocyte growth factor (KGF), into a tissue scaffold, alloderm. The results demonstrated that sustained KGF-ELP release was achieved and the bioactivity of the released therapeutic particles was shown via cell proliferation assay, as well as a mouse pouch model in vivo, where higher cellular infiltration and vascularization were observed in scaffolds functionalized with KGF-ELPs.
Asunto(s)
Biopolímeros/química , Colágeno/química , Elastina/química , Andamios del Tejido/química , Animales , Biopolímeros/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colágeno/farmacología , Factor 7 de Crecimiento de Fibroblastos/metabolismo , Humanos , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Ingeniería de TejidosRESUMEN
Nonhealing wounds possess elevated numbers of pro-inflammatory M1 macrophages, which fail to transition to anti-inflammatory M2 phenotypes that promote healing. Hemoglobin (Hb) and haptoglobin (Hp) proteins, when complexed (Hb-Hp), can elicit M2-like macrophages through the heme oxygenase-1 (HO-1) pathway. Despite the fact that nonhealing wounds are chronically inflamed, previous studies have focused on non-inflammatory systems, and do not thoroughly compare the effects of complexed vs individual proteins. We aimed to investigate the effect of Hb/Hp treatments on macrophage phenotype in an inflammatory, lipopolysaccharide (LPS)-stimulated environment, similar to chronic wounds. Human M1 macrophages were cultured in vitro and stimulated with LPS. Concurrently, Hp, Hb, or Hb-Hp complexes were delivered. The next day, 27 proteins related to inflammation were measured in the supernatants. Hp treatment decreased a majority of inflammatory factors, Hb increased many, and Hb-Hp had intermediate trends, indicating that Hp attenuated overall inflammation to the greatest extent. From this data, Ingenuity Pathway Analysis software identified high motility group box 1 (HMGB1) as a key canonical pathway-strongly down-regulated from Hp, strongly up-regulated from Hb, and slightly activated from Hb-Hp. HMGB1 measurements in macrophage supernatants confirmed this trend. In vivo results in diabetic mice with biopsy punch wounds demonstrated accelerated wound closure with Hp treatment, and delayed wound closure with Hb treatment. This work specifically studied Hb/Hp effects on macrophages in a highly inflammatory environment relevant to chronic wound healing. Results show that Hp-and not Hb-Hp, which is known to be superior in noninflammatory conditions-reduces inflammation in LPS-stimulated macrophages, and HMGB1 signaling is also implicated. Overall, Hp treatment on M1 macrophages in vitro reduced the inflammatory secretion profile, and also exhibited benefits in in silico and in vivo wound-healing models.
Asunto(s)
Proteína HMGB1/efectos de los fármacos , Haptoglobinas/farmacología , Hemoglobinas/farmacología , Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Diabetes Mellitus , Proteína HMGB1/metabolismo , Hemo-Oxigenasa 1 , Humanos , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Ratones , Ratones Obesos , Receptores de Superficie Celular/metabolismo , Transducción de SeñalRESUMEN
Cell preservation is an enabling technology for widespread distribution and applications of mammalian cells. Traditional cryopreservation via slow-freezing or vitrification provides long-term storage but requires cytotoxic cryoprotectants (CPA) and tedious CPA loading/unloading, cooling, and recovering procedures. Hypothermic storage around 0-4 °C is an alternative method but only works for a short period due to its high storage temperatures. Here, we report on the deep-supercooling (DSC) preservation of human adipose-derived stem cells at deep subzero temperatures without freezing for extended storage. Enabled by surface sealing with an immiscible oil phase, cell suspension can be preserved in a liquid state at -13 °C and -16 °C for 7 days with high cell viability, retention of stemness, attachment, and multilineage differentiation capacities. These results demonstrate that DSC is an improved short-term preservation approach to provide off-the-shelf cell sources for booming cell-based medicine and bioengineering.
Asunto(s)
Tejido Adiposo/citología , Criopreservación/métodos , Crioprotectores/farmacología , Células Madre Mesenquimatosas/fisiología , Animales , Supervivencia Celular/efectos de los fármacos , Congelación , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Transición de Fase , VitrificaciónRESUMEN
Fatty liver disease (FLD), the most common chronic liver disease in the United States, may be caused by alcohol or the metabolic syndrome. Alcohol is oxidized in the cytosol of hepatocytes by alcohol dehydrogenase (ADH), which generates NADH and increases cytosolic NADH/NAD+ ratio. The increased ratio may be important for development of FLD, but our ability to examine this question is hindered by methodological limitations. To address this, we used the genetically encoded fluorescent sensor Peredox to obtain dynamic, real-time measurements of cytosolic NADH/NAD+ ratio in living hepatocytes. Peredox was expressed in dissociated rat hepatocytes and HepG2 cells by transfection, and in mouse liver slices by tail-vein injection of adeno-associated virus (AAV)-encoded sensor. Under control conditions, hepatocytes and liver slices exhibit a relatively low (oxidized) cytosolic NADH/NAD+ ratio as reported by Peredox. The ratio responds rapidly and reversibly to substrates of lactate dehydrogenase (LDH) and sorbitol dehydrogenase (SDH). Ethanol causes a robust dose-dependent increase in cytosolic NADH/NAD+ ratio, and this increase is mitigated by the presence of NAD+-generating substrates of LDH or SDH. In contrast to hepatocytes and slices, HepG2 cells exhibit a relatively high (reduced) ratio and show minimal responses to substrates of ADH and SDH. In slices, we show that comparable results are obtained with epifluorescence imaging and two-photon fluorescence lifetime imaging (2p-FLIM). Live cell imaging with Peredox is a promising new approach to investigate cytosolic NADH/NAD+ ratio in hepatocytes. Imaging in liver slices is particularly attractive because it allows preservation of liver microanatomy and metabolic zonation of hepatocytes. NEW & NOTEWORTHY We describe and validate a new approach for measuring free cytosolic NADH/NAD+ ratio in hepatocytes and liver slices: live cell imaging with the fluorescent biosensor Peredox. This approach yields dynamic, real-time measurements of the ratio in living, functioning liver cells, overcoming many limitations of previous methods for measuring this important redox parameter. The feasibility of using Peredox in liver slices is particularly attractive because slices allow preservation of hepatic microanatomy and metabolic zonation of hepatocytes.
Asunto(s)
Técnicas Biosensibles , Citosol/metabolismo , Metabolismo Energético , Hepatocitos/metabolismo , Hígado/metabolismo , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , NAD/metabolismo , Animales , Biomarcadores/metabolismo , Femenino , Genes Reporteros , Células Hep G2 , Humanos , Técnicas In Vitro , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/genética , Masculino , Ratones Endogámicos C57BL , Oxidación-Reducción , Ratas Endogámicas Lew , Reproducibilidad de los Resultados , Factores de Tiempo , TransfecciónRESUMEN
The obesity epidemic continues to escalate each year in the United States more than anywhere else in the world. The existing pharmaceutical and other nonsurgical treatments for morbid obesity produce suboptimal physiologic outcomes compared with those of Roux-en-Y gastric bypass (RYGB) surgery. RYGB has been the gold standard of bariatric surgery because the beneficial long-term outcomes, which include sustainable weight loss and type 2 diabetes mellitus (T2DM) resolution, are far superior to those obtained with other bariatric surgeries. However, the current understanding of RYGB's mechanisms of actions remains limited and incomplete. There is an urgent need to understand these mechanisms as gaining this knowledge may lead to the development of innovative and less invasive procedures and/or medical devices, which can mirror the favorable outcomes of RYGB surgery. In this review, we highlight current observations of the metabolic and physiologic events following RYGB, with a particular focus on the role of the anatomical reconfiguration of the gastrointestinal tract after RYGB.
Asunto(s)
Apetito , Metabolismo Energético , Derivación Gástrica/métodos , Homeostasis , Estómago/fisiopatología , Estómago/cirugía , Percepción del Gusto , Adaptación Fisiológica , Microbioma Gastrointestinal , Humanos , Modelos Biológicos , Respuesta de Saciedad , Estómago/microbiología , Resultado del TratamientoRESUMEN
Traumatic brain injury (TBI) affects 5.3 million people in the United States, and there are 12,500 new cases of spinal cord injury (SCI) every year. There is yet a significant need for in vitro models of TBI and SCI in order to understand the biological mechanisms underlying central nervous system (CNS) injury and to identify and test therapeutics to aid in recovery from neuronal injuries. While TBI or SCI studies have been aided with traditional in vivo and in vitro models, the innate limitations in specificity of injury, isolation of neuronal regions, and reproducibility of these models can decrease their usefulness in examining the neurobiology of injury. Microfluidic devices provide several advantages over traditional methods by allowing researchers to (1) examine the effect of injury on specific neural components, (2) fluidically isolate neuronal regions to examine specific effects on subcellular components, and (3) reproducibly create a variety of injuries to model TBI and SCI. These microfluidic devices are adaptable for modeling a wide range of injuries, and in this review, we will examine different methodologies and models recently utilized to examine neuronal injury. Specifically, we will examine vacuum-assisted axotomy, physical injury, chemical injury, and laser-based axotomy. Finally, we will discuss the benefits and downsides to each type of injury model and discuss how researchers can use these parameters to pick a particular microfluidic device to model CNS injury.
Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Técnicas In Vitro , Dispositivos Laboratorio en un Chip , Traumatismos de la Médula Espinal/metabolismo , Animales , Axotomía , Humanos , Neuronas/patología , VacioRESUMEN
The design of effective electroporation protocols for molecular delivery applications requires the determination of transport parameters including diffusion coefficient, membrane resealing, and critical electric field strength for electroporation. The use of existing technologies to determine these parameters is time-consuming and labor-intensive, and often results in large inconsistencies in parameter estimation due to variations in the protocols and setups. In this work, we suggest using a set of concentric electrodes to screen a full range of electric field strengths in a single test to determine the electroporation-induced transmembrane transport parameters. Using Calcein as a fluorescent probe, we developed analytical methodology to determine the transport parameters based on the electroporation-induced pattern of fluorescence loss from cells. A monolayer of normal human dermal fibroblast (NHDF) cells were pre-loaded with Calcein and electroporated with an applied voltage of 750V with 10 and 50 square pulses with 50µs duration. Using our analytical model, the critical electric field strength for electroporation was found for the 10 and 50 pulses experiments. An inverse correlation between the field strength and the molecular transport time decay constant, and a direct correlation between field strength and the membrane permeability were observed. The results of this work can simplify the development of electroporation-assisted technologies for research and therapies.
Asunto(s)
Membrana Celular/química , Fenómenos Electromagnéticos , Electroporación , Fibroblastos/química , Membrana Celular/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , HumanosRESUMEN
Human immunodeficiency virus (HIV)/hepatitis C virus (HCV) coinfection accelerates progressive liver fibrosis; however, the mechanisms remain poorly understood. HCV and HIV independently induce profibrogenic markers transforming growth factor beta-1 (TGFß1) (mediated by reactive oxygen species [ROS]) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) in hepatocytes and hepatic stellate cells in monoculture; however, they do not account for cellular crosstalk that naturally occurs. We created an in vitro coculture model and investigated the contributions of HIV and HCV to hepatic fibrogenesis. Green fluorescent protein reporter cell lines driven by functional ROS (antioxidant response elements), NFκB, and mothers against decapentaplegic homolog 3 (SMAD3) promoters were created in Huh7.5.1 and LX2 cells, using a transwell to generate cocultures. Reporter cell lines were exposed to HIV, HCV, or HIV/HCV. Activation of the 3 pathways was measured and compared according to infection status. Extracellular matrix products (collagen type 1 alpha 1 (CoL1A1) and tissue inhibitor of metalloproteinase 1 (TIMP1)) were also measured. Both HCV and HIV independently activated TGFß1 signaling through ROS (antioxidant response elements), NFκB, and SMAD3 in both cell lines in coculture. Activation of these profibrotic pathways was additive following HIV/HCV coexposure. This was confirmed when examining CoL1A1 and TIMP1, where messenger RNA and protein levels were significantly higher in LX2 cells in coculture following HIV/HCV coexposure compared with either virus alone. In addition, expression of these profibrotic genes was significantly higher in the coculture model compared to either cell type in monoculture, suggesting an interaction and feedback mechanism between Huh7.5.1 and LX2 cells. CONCLUSION: HIV accentuates an HCV-driven profibrogenic program in hepatocyte and hepatic stellate cell lines through ROS, NFκB, and TGFß1 up-regulation; coculture of hepatocyte and hepatic stellate cell lines significantly increased expression of CoL1A1 and TIMP1; and our novel coculture reporter cell model represents an efficient and more authentic system for studying transcriptional fibrosis responses and may provide important insights into hepatic fibrosis. (Hepatology 2016;64:1951-1968).
Asunto(s)
VIH/genética , VIH/fisiología , Hepacivirus/genética , Hepacivirus/fisiología , Células Estrelladas Hepáticas/fisiología , Células Estrelladas Hepáticas/virología , Hepatocitos/fisiología , Hepatocitos/virología , Activación Transcripcional , Línea Celular , Técnicas de Cocultivo , Humanos , Cirrosis Hepática/virología , FN-kappa B/biosíntesis , FN-kappa B/genéticaRESUMEN
Treatment for end-stage liver failure is restricted by the critical shortage of donor organs; about 4000 people die in the USA while waiting for a transplantable organ. This situation has been a major driving force behind the rise of tissue engineering to build artificial tissues/organs. Recent advancements in creating transplantable liver grafts using decellularized liver scaffolds bring the field closer to clinical translation. However, a source of readily available and highly functional adult hepatocytes in adequate numbers for regenerative liver therapies still remains unclear. Here, we describe a new method to utilize discarded livers to make transplantable new liver grafts. We show that marginal donor livers damaged due to warm ischemia could be treated with machine perfusion to yield 39 million viable hepatocytes per gram of liver, similar to fresh livers, and these cells could be used to repopulate decellularized liver matrix (DLM) scaffolds to make transplantable liver grafts. The hepatocytes from recovered livers sustained their characteristic epithelial morphology while they exhibited slightly lower protein synthesis functions both in plate cultures and in recellularized liver grafts. The dampened protein synthesis was attributed to residual endoplasmic reticulum stress found in recovered cells. The results here represent a unique approach to reengineer transplantable liver grafts solely from discarded organs.
Asunto(s)
Hepatocitos/citología , Regeneración Hepática , Hígado/fisiología , Ingeniería de Tejidos/métodos , Animales , Separación Celular , Células Cultivadas , Matriz Extracelular/química , Hígado/química , Hígado/citología , Perfusión , Ratas , Andamios del Tejido/químicaRESUMEN
Robotic systems have slowly entered the realm of modern medicine; however, outside the operating room, medical robotics has yet to be translated to more routine interventions such as blood sampling or intravenous fluid delivery. In this paper, we present a medical robot that safely and rapidly cannulates peripheral blood vessels-a procedure commonly known as venipuncture. The device uses near-infrared and ultrasound imaging to scan and select suitable injection sites, and a 9-DOF robot to insert the needle into the center of the vessel based on image and force guidance. We first present the system design and visual servoing scheme of the latest generation robot, and then evaluate the performance of the device through workspace simulations and free-space positioning tests. Finally, we perform a series of motion tracking experiments using stereo vision, ultrasound, and force sensing to guide the position and orientation of the needle tip. Positioning experiments indicate sub-millimeter accuracy and repeatability over the operating workspace of the system, while tracking studies demonstrate real-time needle servoing in response to moving targets. Lastly, robotic phantom cannulations demonstrate the use of multiple system states to confirm that the needle has reached the center of the vessel.
RESUMEN
Elastin-like peptides (ELPs) are derivatives of tropoelastin with a unique property that allows them to stay soluble below a certain critical temperature but reversibly form aggregates above that temperature. Since they are derived from tropoelastin, ELPs are biocompatible, non-toxic, and non-immunogenic. The unique properties of ELPs have made them a desirable class of fusion tags used in several biomedical applications including targeted drug delivery and enhancing the half-life of protein drugs. The most significant property of an ELP is that when fused to other proteins, the phase transition property of the ELP is maintained, and the target protein can be purified using the thermally driven property of the ELP. The ELP tag purification process is simple and inexpensive, and involves cycling the protein above and below the transition temperature of the ELP fusion followed by centrifugation to obtain the desired protein, without any need for chromatography. Consequently, using ELPs as a purification tag should be potentially interesting to biopharmaceutical companies who spend a significant percentage of their manufacturing costs on expensive protein purification techniques such as chromatography and filtration. However, ELP tags have not yet been used for commercial protein purification due to some challenges of translating this technique, which has been demonstrated mostly in academic laboratories, to a biotechnology manufacturing environment. The article first reviews the state-of-the-art in protein "ELPylation," and discusses some applications which have benefitted from using ELP as a fusion tag. Then, the article discusses the main advantages of using ELP as a purification tag, and evaluates the remaining hurdles for its implementation in industrial protein production. Biotechnol. Bioeng. 2016;113: 1617-1627. © 2016 Wiley Periodicals, Inc.