Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Life Sci ; 335: 122242, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37952834

RESUMEN

AIM: 2-Pentadecyl-2-oxazoline (PEA-OXA), the oxazoline derivative of N-palmitoylethanolamine, exerts anti-inflammatory activity; however, very little is known about the molecular mechanisms underlying this effect. Here, we tested the anti-neuroinflammatory effect of PEA-OXA in primary microglia and we also investigated the possible interaction of the molecule with the Toll-like receptor 4 (TLR4)-myeloid differentiation protein-2 (MD-2) complex. MAIN METHODS: The anti-inflammatory effect of PEA-OXA was analyzed by measuring the expression and release of pro-inflammatory mediators in primary microglia by real-time PCR and ELISA, respectively. The effect of PEA-OXA on the activation of TLR4 signaling was assessed using two stably TLR4-transfected cell lines (i.e., HEK-293 and Ba/F3 cells). Finally, the putative binding mode of PEA-OXA to TLR4-MD-2 was investigated by molecular docking simulations. KEY FINDINGS: Treatment with PEA-OXA resulted in the following effects: (i) it down-regulated gene expression of several pro-inflammatory molecules and the secretion of pro-inflammatory cytokines in LPS stimulated microglia cells; (ii) it did not prevent microglia activation after stimulation with TLR2 ligands; (iii) it prevented TLR4/NF-κB activation triggered by LPS in HEK-Blue™ hTLR4 cells; and (iv) it interfered with the binding of LPS to TLR4-MD-2 complex. Furthermore, molecular docking studies suggested that PEA-OXA could bind MD-2 with a 1:3 (MD-2/PEA-OXA) stoichiometry. CONCLUSION: We show for the first time that the anti-neuroinflammatory effect of PEA-OXA involves its activity against TLR4 signaling, making this molecule a valuable tool for the development of new compounds directed to control neuroinflammation via inhibiting TLR4 signaling.


Asunto(s)
Inflamación , Lipopolisacáridos , Humanos , Lipopolisacáridos/efectos adversos , Inflamación/metabolismo , Receptor Toll-Like 4/metabolismo , Simulación del Acoplamiento Molecular , Microglía/metabolismo , Células HEK293 , Antiinflamatorios/farmacología , FN-kappa B/metabolismo
2.
Bull Natl Res Cent ; 46(1): 267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36415483

RESUMEN

Background: Several reports of unheeded complications secondary to the current mass international rollout of SARS-COV-2 vaccines, one of which is myocarditis occurring with the FDA fully approved vaccine, Pfizer, and others. Main body of the abstract: Certain miRNAs (non-coding RNA sequences) are involved in the pathogenesis in viral myocarditis, and those miRNAs are interestingly upregulated in severe COVID-19. We hypothesize that the use of mRNA-based vaccines may be triggering the release of host miRNAs or that trigger the occurrence of myocarditis. This is based on the finding of altered host miRNA expression promoting virus-induced myocarditis. Short conclusion: In conclusion, miRNAs are likely implicated in myocarditis associated with mRNA vaccines. Our hypothesis suggests the use of miRNA as a biomarker for the diagnosis of mRNA vaccine-induced myocarditis. Additionally, the interplay between viral miRNA and the host immune system could alter inflammatory profiles, hence suggesting the use of therapeutic inhibition to prevent such complications.

3.
Med Hypotheses ; 148: 110520, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33561624

RESUMEN

Following the decline in Physical Activity (PA) due to COVID-19 restrictions in the form of government mandated lockdowns and closures of public spaces, the modulatory effect of physical exercise on immunity is being heavily revisited. In an attempt to comprehend the wide discrepancy in patient response to COVID-19 and the factors that potentially modulate it, we summarize the findings relating PA to inflammation and immunity. A distinction is drawn between moderate intensity and high intensity physical exercise based on the high lactate production observed in the latter. We hypothesize that, the lactate production associated with high intensity anaerobic exercise is implicated in the modulation of several components of the innate and adaptive immunity. In this review, we also summarize these immunomodulatory effects of lactate. These include increasing serum IL-6 levels, the main mediator of cytokine storms, as well as affecting NK cells, Macrophages, Dendritic cells and cytotoxic T-lymphocytes. The implications of high lactate levels in athletic performance are highlighted where athletes should undergo endurance training to increase VO2 max and minimize lactate production. Tumor models of hypoxia were also reported where lactate levels are elevated leading to increased invasiveness and angiogenesis. Accordingly, the novel lactate blocking strategy employed in cancer treatment is evaluated for its potential benefit in COVID-19 in addition to the readily available beta-blockers as an antagonist to lactate. Finally, we suggest the diagnostic/prognostic purpose of the elevated lactate levels that can be determined through sweat lactate testing. It is the detrimental effect of lactate on immunity and its presence in sweat that qualify it to be used as a potential non-invasive marker of poor COVID-19 outcome.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Ácido Láctico/antagonistas & inhibidores , Anaerobiosis/inmunología , COVID-19/inmunología , COVID-19/fisiopatología , Ejercicio Físico/fisiología , Humanos , Inflamación/inmunología , Interleucina-6/sangre , Ácido Láctico/inmunología , Ácido Láctico/metabolismo , Modelos Inmunológicos , Pandemias , SARS-CoV-2
4.
Obes Med ; 20: 100303, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32995660

RESUMEN

COVID-19 has shown a substantial variation in the rate and severity by which it impacts different demographic groups. Specifically, it has shown a predilection towards obese patients as well as well as other vulnerable groups including predilection of males over females, old age over young age and black races over Caucasian ones. Single cell sequencing studies have highlighted the role of cell polarity and the co-expression of proteases, such as Furin, along with ACE2 in the genesis of coronavirus disease rather than exclusively link tissue involvement with ACE2 levels thought previously. It has also forged a connection between the genetic and immune cellular mechanisms underlying COVID infection and the inflammatory state of obese patients, offering a more accurate explanation as to why obese patients are at increased risk of poor COVID outcomes. These commonalities encompass macrophage phenotype switching, genetic expression switching, and overexpression of the pro-inflammatory cytokines, depletion of the regulatory cytokines, in situ T cell proliferation, and T cell exhaustion. These findings demonstrate the necessity of single cell sequencing as a rapid means to identify and treat those who are most likely to need hospital admission and intensive care, in the hopes of precision medicine. Furthermore, this study underlines the use of immune modulators such as Leptin sensitizers, rather than immune suppressors as anti-inflammation therapies to switch the inflammatory response from a drastic immunological type 1 response to a beneficial type 2 effective one.

5.
Expert Opin Drug Metab Toxicol ; 14(10): 1043-1055, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30269615

RESUMEN

INTRODUCTION: Pharmacomicrobiomics and toxicomicrobiomics study how variations within the human microbiome (the combination of human-associated microbial communities and their genomes) affect drug disposition, action, and toxicity. These emerging fields, interconnecting microbiology, bioinformatics, systems pharmacology, and toxicology, complement pharmacogenomics and toxicogenomics, expanding the scope of precision medicine. Areas covered: This article reviews some of the most recently reported pharmacomicrobiomic and toxicomicrobiomic interactions. Examples include the impact of the human gut microbiota on cardiovascular drugs, natural products, and chemotherapeutic agents, including immune checkpoint inhibitors. Although the gut microbiota has been the most extensively studied, some key drug-microbiome interactions involve vaginal, intratumoral, and environmental bacteria, and are briefly discussed here. Additionally, computational resources, moving the field from cataloging to predicting interactions, are introduced. Expert opinion: The rapid pace of discovery triggered by the Human Microbiome Project is moving pharmacomicrobiomic research from scattered observations to systematic studies focusing on screening microbiome variants against different drug classes. Better representation of all human populations will improve such studies by avoiding sampling bias, and the integration of multiomic studies with designed experiments will allow establishing causation. In the near future, pharmacomicrobiomic testing is expected to be a key step in screening novel drugs and designing precision therapeutics.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Microbiota , Preparaciones Farmacéuticas/metabolismo , Animales , Microbioma Gastrointestinal , Humanos , Preparaciones Farmacéuticas/administración & dosificación , Farmacogenética/métodos , Medicina de Precisión/métodos , Toxicogenética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA