Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Langmuir ; 40(25): 13236-13246, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38864376

RESUMEN

A biocompatible and antifouling polymeric medical coating was developed through rational design for anchoring pendant groups for the modification of stainless steel. Zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) was copolymerized individually with three anchoring monomers of carboxyl acrylamides with different alkyl spacers, including acryloylglycine (2-AE), 6-acrylamidohexanoic acid (6-AH), and 11-acrylamidoundecanoic acid (11-AU). The carboxylic acid groups are responsible for the stable grafting of copolymers onto stainless steel via a coordinative interaction with metal oxides. Due to hydrophobic interaction and hydrogen bonding, the anchoring monomers enable the formation of self-assembling structures in solution and at a metallic interface, which can play an important role in the thin film formation and functionality of the coatings. Therefore, surface characterizations of anchoring monomers on stainless steel were conducted to analyze the packing density and strength of the intermolecular hydrogen bonds. The corresponding copolymers were synthesized, and their aggregate structures were assessed, showing micelle aggregation for copolymers with higher hydrophobic compositions. The synergistic effects of inter/intramolecular interactions and hydrophobicity of the anchoring monomers result in the diversity of the thickness, surface coverage, wettability, and friction of the polymeric coatings on stainless steel. More importantly, the antifouling properties of the coatings against bacteria and proteins were strongly correlated to thin film formation. Ultimately, the key lies in deciphering the molecular structure of the anchoring pendants in thin film formation and assessing the effectiveness of the coatings, which led to the development of medical coatings through the graft-onto approach.

2.
Langmuir ; 38(8): 2495-2501, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35167284

RESUMEN

The adsorption of nucleobase at a gold electrode has been a model system to study the interaction between biomolecule and metal, which is relevant to the development of sensors and molecular electronics. The current study has employed in situ scanning tunneling microscopy (STM) and voltammetry to investigate the adsorption configuration and spatial structure of guanine (G) on a well-defined Au(111) electrode in perchloric acid (HClO4) and neutral phosphate buffer solution (PBS) containing 50 µM G. Potential control had a profound effect on the adsorption of the G molecule on the Au(111) electrode. No adsorption of G was observed at a potential more negative than 0 V in HClO4 and -0.2 V (versus Ag/AgCl) in PBS; shifting potential positively triggered a rapid adsorption of G to yield a well-ordered G array. Different spatial structures of G admolecules were imaged with STM in HClO4 and PBS, suggesting that ions in the electrolyte were important in this adsorption event. Shifting potential positively caused a more compact G adlayer with molecules adopting a tilted orientation. Meanwhile, G molecules continued to deposit on the Au(111) electrode leading to a multilayer G film. These processes were reversible to the potential modulation. G admolecules on the Au(111) electrode could be irreversibly oxidized in 0.1 M PBS, which resulted in a prominent peak at 0.74 V in the voltammogram. This oxidation process could be used to analyze the G molecule in a sample.


Asunto(s)
Guanina , Adsorción , Electrodos , Concentración de Iones de Hidrógeno , Propiedades de Superficie
3.
Langmuir ; 35(5): 1652-1661, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30107740

RESUMEN

Surface modification for biosensors has focused attention for improvement of their sensitivity and specificity, particularly for the detection in complex medium. In this work, we have synthesized zwitterionic carboxybetaine-thiols (CB-thiols) and sulfobetaine-thiols (SB-thiols) for modification of gold substrates to form a functional self-assembled monolayer (SAM) for the immunoassay in a surface plasmon resonance (SPR) biosensor. X-ray photoelectron spectroscopy (XPS), contact angle goniometer, and cyclic voltammetry were applied for characterizations of elemental composition, surface wettability, and packing density, respectively. The antifouling properties of the SAMs were accessed by quantitative analysis of protein and bacterial adsorption. The results from the SAMs with a single component indicated that the SB-thiol SAM provides better surface hydrophilicity, fouling resistance, and packing density as compared to the CB-thiol SAM, likely due to the ionic association of CB moieties. However, the CB-thiol with the functional carboxylate group plays a critical role in postmodification of biomolecules via commercially available amine coupling chemistry. Thus, the mixed SAMs were prepared to integrate the unique characteristics from CB- and SB-thiols to control compositions and surface properties. The immunoassay was performed in the SPR biosensor, showing that the zwitterionic mixed SAM enables immobilization of biorecognition elements (BREs), and improved sensitivity and specificity. Consequently, the work reveals excellent and attractive versatility, antifouling, and functionalizable properties of zwitterionic mixed SAMs comprising CB- and SB-thiols for biosensing applications. This surface chemistry is expected to be applicable to monitor specific molecular recognition events.

4.
J Am Chem Soc ; 137(13): 4414-23, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25768124

RESUMEN

A new series of metal-free organic chromophores (TPA-TTAR-A (1), TPA-T-TTAR-A (2), TPA-TTAR-T-A (3), and TPA-T-TTAR-T-A (4)) are synthesized for application in dye-sensitized solar cells (DSSC) based on a donor-π-bridge-acceptor (D-π-A) design. Here a simple triphenylamine (TPA) moiety serves as the electron donor, a cyanoacrylic acid as the electron acceptor and anchoring group, and a novel tetrathienoacene (TTA) as the π-bridge unit. Because of the extensively conjugated TTA π-bridge, these dyes exhibit high extinction coefficients (4.5-5.2 × 10(4) M(-1) cm(-1)). By strategically inserting a thiophene spacer on the donor or acceptor side of the molecules, the electronic structures of these TTA-based dyes can be readily tuned. Furthermore, addition of a thiophene spacer has a significant influence on the dye orientation and self-assembly modality on TiO2 surfaces. The insertion of a thiophene between the π-bridge and the cyanoacrylic acid anchoring group in TPA-TTAR-T-A (dye 3) promotes more vertical dye orientation and denser packing on TiO2 (molecular footprint = 79 Å(2)), thus enabling optimal dye loading. Using dye 3, a DSSC power conversion efficiency (PCE) of 10.1% with Voc = 0.833 V, Jsc = 16.5 mA/cm(2), and FF = 70.0% is achieved, among the highest reported to date for metal-free organic DSSC sensitizers using an I(-)/I3(-) redox shuttle. Photophysical measurements on dye-grafted TiO2 films reveal that the additional thiophene unit in dye 3 enhances the electron injection efficiency, in agreement with the high quantum efficiency.

5.
Biochim Biophys Acta ; 1828(2): 642-51, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22995243

RESUMEN

Atomic force microscopy (AFM) is employed to reveal the morphological changes of the supported phospholipid bilayers hydrolyzed by a phospholipase A(2) (PLA(2)) enzyme in a buffer solution at room temperature. Based on the high catalytic selectivity of PLA(2) toward l-enantiomer phospholipids, five kinds of supported bilayers made of l- and D-dipalmitoylphosphatidylcholines (DPPC), including l-DPPC (upper leaflet adjacent to solution)/l-DPPC (bottom leaflet) (or l/l in short), l/d, d/l, d/d, and racemic ld/ld, were prepared on a mica surface in gel-phase, to explicate the kinetics and mechanism of the enzyme-induced hydrolysis reaction in detail. AFM observations for the l/l bilayer show that the hydrolysis rate for l-DPPC is significantly increased by PLA(2) and most of the hydrolysis products desorb from substrate surface in 40 min. As d-enantiomers are included in the bilayer, the hydrolysis rate is largely decreased in comparison with the l/l bilayer. The time used to hydrolyze the as-prepared bilayers by PLA(2) increases in the sequence of l/l, l/d, ld/ld, and d/l (d/d is inert to the enzyme action). d-enantiomers in the enantiomer hybrid bilayers remain on the mica surface at the end of the hydrolysis reaction. It was confirmed that the hydrolysis reaction catalyzed by PLA(2) preferentially occurs at the edges of pits or defects on the bilayer surface. The bilayer structures are preserved during the hydrolysis process. Based on these observations, a novel kinetics model is proposed to quantitatively account for the PLA(2)-catalyzed hydrolysis of the supported phospholipid bilayers. The model simulation demonstrates that PLA(2) mainly binds with lipids at the perimeter of defects in the upper leaflet and leads to a hydrolysis reaction, yielding species soluble to the solution phase. The lipid molecules underneath subsequently flip up to the upper leaflet to maintain the hydrophilicity of the bilayer structure. Our analysis shows that d-enantiomers in the hybrid bilayers considerably reduce the hydrolysis rate by its ineffective binding with PLA(2).


Asunto(s)
Enzimas/química , Membrana Dobles de Lípidos/química , Microscopía de Fuerza Atómica/métodos , Fosfolípidos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Silicatos de Aluminio/química , Venenos de Abeja/metabolismo , Hidrólisis , Cinética , Lípidos/química , Fosfolipasas A2/química , Estereoisomerismo , Temperatura , Factores de Tiempo
6.
Langmuir ; 30(46): 13890-7, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25372652

RESUMEN

Voltammetry and in-situ scanning tunneling microscopy (STM) were used to examine electrodeposition of cobalt (Co) on a stationary Pt(111) electrode in 0.1 M K2SO4 + 1 mM H2SO4 + 10 mM CoSO4 (or the sulfate solution) without and with 10 mM chloride (the chloride solution). Under- and overpotential deposition (UPD and OPD) of Co resulted in reduction peaks at -0.52 and -0.74 V (vs Ag/AgCl), respectively. Hydrogen evolution was the major obstruction to Co(2+) reduction, which limited the efficiency of Co deposition at ∼63% in both solutions. UPD of Co resulted in a highly ordered honeycomb structure in the sulfate solution, whereas that formed in the chloride solution was clearly disordered. Multilayer Co deposit formed by OPD at -0.74 V in the sulfate medium was crystalline, forming moiré structures for the first eight layers, followed by pyramids made of stacked triangles. These results suggested face-centered cubic stacking of the Co deposit. Co film produced in the chloride solution was also layered, except perimeters of Co layers were mostly rugged. Distinct screw dislocations and spiral defects were seen in the Co thin films produced in both solutions.

7.
ACS Omega ; 9(16): 18304-18313, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38680361

RESUMEN

A nickel film electroplated onto a metal substrate can be used as a catalyst for water splitting and a magnetic material for spin valves. Although the nucleation and growth of Ni on Au(111) have already been examined with in situ scanning tunneling microscopy (STM), the current study provides new insights of the structure of the first layer of Ni on an ordered Au(111) electrode in 0.1 M KSO4 + 1 mM H2SO4 + 10 mM NiSO4 (pH 3). Prolonged STM scanning of the Ni monolayer on a Au(111) electrode revealed interfacial mixing to produce a surface alloy, initially assuming segregated Ni domains and later transforming them to a homogeneous Ni/Au phase. The formation of the Ni/Au(111) surface alloy affected the structure of the subsequent bulk Ni deposition. The inclusion of 2-mercapto-1-methylimidazole (MMI) in the deposition bath incurred Ni deposition at a less negative potential and a faster rate, resulting in an overall 5.3 times more Ni deposited on the Au electrode in potentiodynamic experiments. MMI molecules were adsorbed on the Ni deposit to prevent Ni dissolution in the Au(111) electrode. MMI could catalyze the presumed rate-determining step from Ni2+ to Ni+ en route to the metallic Ni. The resultant Ni film with MMI had a 3D texture without a preferred crystal orientation on the Au electrode, as opposed to a layer type growth of Ni on Au(111) without MMI.

8.
Langmuir ; 28(26): 10120-7, 2012 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-22676369

RESUMEN

This study employed real-time in situ STM imaging to examine the adsorption of PEG molecules on Pt(111) modified by a monolayer of copper adatoms and the subsequent bulk Cu deposition in 1 M H(2)SO(4) + 1 mM CuSO(4)+ 1 mM KCl + 88 µM PEG. At the end of Cu underpotential deposition (~0.35 V vs Ag/AgCl), a highly ordered Pt(111)-(√3 × âˆš7)-Cu + HSO(4)(-) structure was observed in 1 M H(2)SO(4) + 1 mM CuSO(4). This adlattice restructured upon the introduction of poly(ethylene glycol) (PEG, molecular weight 200) and chloride anions. At the onset potential for bulk Cu deposition (~0 V), a Pt(111)-(√3 × âˆš3)R30°-Cu + Cl(-) structure was imaged with a tunneling current of 0.5 nA and a bias voltage of 100 mV. Lowering the tunneling current to 0.2 nA yielded a (4 × 4) structure, presumably because of adsorbed PEG200 molecules. The subsequent nucleation and deposition processes of Cu in solution containing PEG and Cl(-) were examined, revealing the nucleation of 2- to 3-nm-wide CuCl clusters on an atomically smooth Pt(111) surface at overpotentials of less than 50 mV. With larger overpotential (η > 150 mV), Cu deposition seemed to bypass the production of CuCl species, leading to layered Cu deposition, starting preferentially at step defects, followed by lateral growth to cover the entire Pt electrode surface. These processes were observed with both PEG200 and 4000, although the former tended to produce more CuCl nanoclusters. Raising [H(2)SO(4)] to 1 M substantiates the suppressing effect of PEG on Cu deposition. This STM study provided atomic- or molecular-level insight into the effect of PEG additives on the deposition of Cu.

9.
Langmuir ; 28(40): 14476-87, 2012 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-22978781

RESUMEN

The adsorption and desorption of bis-(3-sulfopropyl) disulfide (SPS) on Cu and Au electrodes and its electrochemical effect on Cu deposition and dissolution were examined using cyclic voltammetry stripping (CVS), field-emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS). SPS dissociates into 3-mercapto-1-propanesulfonate when it is contacted with Au and Cu electrodes, producing Cu(I)- and Au(I)-thiolate species. These thiolates couple with chloride ions and promote not only the reduction of Cu(2+) in Cu deposition but also the oxidation of Cu(0) to Cu(+) in Cu stripping. During Cu electrodeposition on the SPS-modified Au electrode, thiolates transfer from Au onto the Cu underpotential deposition (UPD) layer. The Cu UPD layer stabilizes a large part of the transferred thiolates which subsequently is buried by the Cu overpotential deposition (OPD) layer. The buried thiolates reappear on the Au electrode after the copper deposit is electrochemically stripped off. A much smaller part of thiolates transfers to the top of the Cu OPD layer. In contrast, when SPS preadsorbs on a Cu-coated Au electrode, almost all of the adsorbed SPS leaves the Cu surface during Cu electrochemical stripping and does not return to the uncovered Au surface. A reaction mechanism is proposed to explain these results.

10.
ACS Appl Mater Interfaces ; 14(19): 22053-22060, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35512181

RESUMEN

Triarylamine end-capped-functionalized arylene-imidazole derivatives were synthesized from readily accessible, inexpensive precursors and employed as hole transporting materials (HTMs) in perovskite solar cells (PSCs). All the HTMs displayed high thermal decomposition temperatures (>410 °C), which is beneficial for realizing stable PSC devices. In addition, the new HTMs show appropriate energy level alignment with the perovskite layer, ensuring efficient hole transfer from perovskites to HTMs. Interestingly, PSCs fabricated with the triarylamine-functionalized imidazolyl-capped bithiophene molecule (DImBT-4D) as the HTM exhibited the best power conversion efficiency of 20.11%, comparable to that of the benchmark HTM spiro-OMeTAD, prompting it be a prospective candidate for large-scale PSC applications.

11.
Langmuir ; 27(11): 6801-7, 2011 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-21526808

RESUMEN

The adsorption of bis-3-sodiumsulfopropyldi-sulfide (SPS) on metal electrodes in chloride-containing media has been intensively studied to unveil its accelerating effect on Cu electrodeposition. Molecular resolution scanning tunneling microscopy (STM) imaging technique was used in this study to explore the adsorption and decomposition of SPS molecules concurring with the electrodeposition of copper on an ordered Pt(111) electrode in 0.1 M HClO(4) + 1 mM Cu(ClO(4))(2) + 1 mM KCl. Depending on the potential of Pt(111), SPS molecules could react, adsorb, and decompose at chloride-capped Cu films. A submonolayer of Cu adatoms classified as the underpotential deposition (UPD) layer at 0.4 V (vs Ag/AgCl) was completely displaced by SPS molecules, possibly occurring via RSSR (SPS) + Cl-Cu-Pt → RS(-)-Pt(+) + RS(-) (MPS) + Cu(2+) + Cl(-), where MPS is 3-mercaptopropanesulfonate. By contrast, at 0.2 V, where a full monolayer of Cu was presumed to be deposited, SPS molecules were adsorbed in local (4 × 4) structures at the lower ends of step ledges. Bulk Cu deposition driven by a small overpotential (η < 50 mV) proceeded slowly to yield an atomically smooth Cu deposit at the very beginning (<5 layers). On a bilayer Cu deposit, the chloride adlayer was still adsorbed to afford SPS admolecules arranged in a unique 1D striped phase. SPS molecules could decompose into MPS upon further Cu deposition, as a (2 × 2)-MPS structure was observed with prolonged in situ STM imaging. It was possible to visualize either SPS admolecules in the upper plane or chloride adlayer sitting underneath upon switching the imaging conditions. Overall, this study established a MPS molecular film adsorbed to the chloride adlayer sitting atop the Cu deposit.

12.
Langmuir ; 26(10): 7148-52, 2010 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-20073524

RESUMEN

The adsorption of 3,3'''-dihexyl-2,2':5',2'':5'',2'''-quaterthiophene (4T) molecules on an Au(111) electrode was examined by using in situ scanning tunneling microscopy in 0.10 M HClO(4), revealing internal molecular structures of the tetrathiophene backbones and the hexyl side chains. The 4T admolecules were packed in lamellae with their molecular axis aligned along the main axis of the Au(111) substrate and their hexyl side chains interdigitated to enhance intermolecular interaction. Dynamics of molecular organization incurred by the shifting of potential was also observed in this study. By examining and comparing the adsorption of 4T on HOPG and Au(111), we address the role of the substrate in understanding the arrangement of 4T admolecules.


Asunto(s)
Oro/química , Tiofenos/química , Adsorción , Electrodos , Microscopía de Túnel de Rastreo , Conformación Molecular , Tamaño de la Partícula , Percloratos/química , Propiedades de Superficie
13.
Langmuir ; 26(13): 10771-7, 2010 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-20586412

RESUMEN

We have used electrochemical scanning tunneling microscopy (EC-STM) to obtain molecular insights on the adlayer structures and electrochemical polymerization of 3,4-ethylenedioxythiophene (EDOT) on a bare Au(111) single crystal electrode in 0.1 M HClO(4) solution. Cyclic voltammetric (CV) studies showed an increase in anodic current at 0.90 V with the oxidation of EDOT monomer occurring at E = 1.10 V (vs reversible hydrogen electrode). In situ STM revealed, for the first time, that EDOT molecules can spontaneously form organized adlayers on a bare Au(111) surface with 18 muM concentration of EDOT in aqueous solution. Molecularly resolved STM images of the EDOT adlayer showed two domains consisting of disordered and ordered structures with the formation of vacancy islands or "etch pits". Several EDOT structures were observed at +0.60 V, namely, (4 x 7), (5 x square root(37)), and (square root(7) x 3) with calculated coverages of 0.107, 0.114, and 0.111 ML, respectively. Electropolymerization was also carried out using in situ STM in 0.10 M HClO(4) under potential control.

14.
Langmuir ; 26(2): 982-9, 2010 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-20067311

RESUMEN

The adsorption of hexahexylduodecithiophene (12T) on a Au(111) electrode was investigated by using cyclic voltammetry (CV) and in situ electrochemical scanning tunneling microscopy (EC-STM) in 0.10 M HClO(4). Potential control at 0.20 V (vs RHE) revealed adlayer structures of mostly folded and rarely angular (oblique) and extended conformations on a reconstructed Au(111)-(square root(3) x 22) surface. The angular and extended conformations predominate when the electrode potential is increased to 0.35 and 0.60 V. Folded structures are still evident, but dynamic STM studies showed unfolding of this conformation. With molecular STM imaging of 12T adlayers, we address the packing arrangement and conformational changes of 12T admolecules on the reconstructed Au(111) electrode surface.

15.
Langmuir ; 26(16): 13263-71, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20695568

RESUMEN

In situ scanning tunneling microscopy (STM) and cyclic voltammetry (CV) were used to study the adsorption of 3-mercapto-1-propanesulfonic acid (MPS) and bis(3-sulfopropyl)-disulfide (SPS) on Au(111) electrode in a HClO(4) aqueous solution. Chloride ions were introduced into the electrolyte solution, and their effect on the adsorption behavior of MPS and SPS was investigated. The CV results show that SPS and MPS molecules preferentially adsorb on the Au(111) surface compared to chloride ions, and furthermore, chloride ion can induce the adsorption of thiol molecules on the Au(111) surface. In the absence of chloride, no adsorption phase of SPS (or MPS) adlayer can be imaged by STM at low potentials. Raising electrode potential leads to the appearance of disordered adsorption phase at ca. 0.4 V (vs RHE) and ordered adlattices at ca. 0.8 V. In the presence of chloride, ordered adsorption structures of SPS and MPS appear at a lower potential (0.2 V), implying the enhancement effect of chloride to the thiol adsorption. It is inferred that the presence of chloride ions triggers a more positively charged gold surface, enhancing the reaction rate of thiol adsorption. Furthermore, the presence of chloride also leads to a decrease in the thiol-electrolyte interaction, due to the high solvation effect of chloride ions, which promotes the adsorption of SPS and MPS onto the Au surface. With further elevation of electrode potential, electrostatic interaction leads to coadsorption of chloride ions into the adlayer, as well as orientation changes of the ad-molecules. As a result, the ordered adlattice was disrupted and disappeared at ca. 0.5 V.

16.
Langmuir ; 26(16): 13353-8, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20695577

RESUMEN

In situ scanning tunneling microscopy (STM) was used to reveal the structures of dithieno[2,3-b:3,2-d]thiophene diphenyl (DTT) molecules deposited onto Au(111) electrode from a dosing solution made of dichlorobenzene and 50 muM DTT. Potential control was proven to be of prime importance in guiding the arrangement of DTT admolecules on Au(111) in 0.1 M HClO(4), as disorder DTT adlayer seen at E > 0.3 V (vs reversible hydrogen electrode) was transformed into a highly ordered (2 x 7 square root(3))rect -2DTT structure when the potential was made to 0.05 to 0.2 V. The ordered structure was stable for hours between 0.05 and 0.2 V. However, switching the potential further negative to 0 V resulted in slow melting of the ordered structure. The (2 x 7 square root(3))rect-DTT ordered adlattices recuperated when the potential was made positive to 0.2 V. Internal molecular functionalities of the thienothiophene and benzene in DTT admolecules were clearly discerned, from which the lateral structure for the (2 x 7 square root(3))rect-2DTT structure and registries of admolecules were deduced. The dynamics of the DTT adlattices on the Au(111) electrode surface was examined by real-time STM imaging, showing reorientation of as many as 150 DTT admolecules to join a neighboring ordered array within minutes.

17.
Langmuir ; 26(8): 5576-82, 2010 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-20050608

RESUMEN

In situ scanning tunneling microscopy (STM) was used to study the adsorption and polymerization of aniline on Au(111) single-crystal electrode in 0.1 M perchloric acid and 0.1 M benzenesulfonic acids (BSA) containing 30 mM aniline, respectively. At the onset potential of aniline's oxidation, approximately 0.8 V [vs reversible hydrogen electrode], aniline molecules were adsorbed in highly ordered arrays, designated as (3 x 2 square root(3)) and (4 x 2 square root(3)) in perchloric acid and BSA, respectively. These structures consisted of intermingled aniline molecules and perchlorate or BSA(-) anions zigzagging in the <110> directions in HClO(4) and in the <121> directions in BSA. The coverage of aniline admolecule on Au(111) was lower in BSA than in HClO(4). Raising the potential to 0.9 V or more positive values triggered the oxidation and polymerization of aniline. With aniline molecules arranging in a way similar to the backbone of PAN in HClO(4), they readily coupled with each other to produce linear polymeric chains aligned predominantly in the 110 directions of the Au(111). Compared with the results observed in H(2)SO(4) (Lee et al. J. Am. Chem. Soc. 2009, 131, 6468), the rate of polymerization was slower in HClO(4) and the produced PAN molecules tended to aggregate on the Au(111) electrode. PAN molecules generated in HClO(4) were anomalously shorter than those formed in H(2)SO(4). In 0.1 M BSA, PAN molecules produced by small overpotential (eta < 100 mV) could assume linear chains or 3D aggregates, depending on [aniline]. These results revealed molecular level details in electropolymerization of aniline, highlighting the important role of anion in controlling the conformation of PAN molecules and the texture of PAN film.

18.
Phys Chem Chem Phys ; 12(32): 9276-84, 2010 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-20607178

RESUMEN

Cyclic voltammetry (CV) and in situ scanning tunneling microscopy (STM) were employed to study the adsorption and polymerization of the geometric isomers of ethylaniline (EA) on a Au(111) single-crystal electrode in 0.5 M H(2)SO(4). All three isomers, namely o-, m-, and p-EA, were adsorbed in highly ordered structures, identified as Au(111)-(4 x 2 square root(3))rect for m- and p-EA and (4 square root(3) x 4 square root(3))R30 degrees for o-EA, at the onset potentials (approximately 0.9 V [vs. reversible hydrogen electrode]) for electropolymerization. Raising the potential in excess of 0.9 V resulted in oxidation and polymerization of m- and o-EA, but decomposition of p-EA. Molecular-resolution STM imaging revealed that poly(m-EA) and poly(o-EA), denoted respectively as m- and o-PEA, exhibited distinctively different molecular shapes. More specifically, m-PEA molecules were predominantly linear and aligned preferentially in the 121 directions of the Au(111) surface; whereas o-PEA molecules were ill-defined in shape and in dimension. These differences in molecular conformation stemmed from unlike arrangements of adsorbed monomers at 0.9 V. Notably, m-EA were adsorbed in zigzags with two nearest neighbors separated by approximately 0.5 nm, which were spatially so similar to the backbones of m-PEA that m-EA molecules coupled readily when the potential was raised high enough to induce the oxidation of m-EA. In contrast, the arrangement of o-EA molecules was so different from the ideal configuration of its polymer that molecules coupled randomly to yield crooked polymer chains less than 20 nm in length. The effect of potential on the structure of m-PEA was examined also, revealing notable branching of linear m-PEA if the electrochemical potential was set at 1.1 V.

19.
ACS Appl Mater Interfaces ; 12(22): 25081-25091, 2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32340439

RESUMEN

A new organic small-molecule family comprising tetracyanoquinodimethane-substituted quinoidal dithioalky(SR)terthiophenes (DSTQs) (DSTQ-6 (1); SR = SC6H13, DSTQ-10 (2); SR = SC10H21, DSTQ-14 (3); SR = SC10H21) was synthesized and contrasted with a nonthioalkylated analogue (DRTQ-14 (4); R = C14H29). The physical, electrochemical, and electrical properties of these new compounds are thoroughly investigated. Optimized geometries obtained from density functional theory calculations and single-crystal X-ray diffraction reveal the planarity of the SR-containing DSTQ core. DSTQs pack in a slipped π-π stacked two-dimensional arrangement, with a short intermolecular stacking distance of 3.55 Å and short intermolecular S···N contacts of 3.56 Å. Thin-film morphological analysis by grazing incident X-ray diffraction reveals that all DSTQ molecules are packed in an edge-on fashion on the substrate. The favorable molecular packing, the high core planarity, and very low lowest unoccupied molecular orbital (LUMO) energy level (-4.2 eV) suggest that DSTQs could be electron-transporting semiconductors. Organic field-effect transistors based on solution-sheared DSTQ-14 exhibit the highest electron mobility of 0.77 cm2 V-1 s-1 with good ambient stability, which is the highest value reported to date for such a solution process terthiophene-based small molecular semiconductor. These results demonstrate that the device performance of solution-sheared DSTQs can be improved by side chain engineering.

20.
J Am Chem Soc ; 131(18): 6468-74, 2009 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-19361217

RESUMEN

In situ scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure (NEXAFS) have been used to examine the conformation of a monolayer of polyaniline (PAN) molecules produced on a Au(111) single-crystal electrode by anodization at 1.0 V [vs reversible hydrogen electrode (RHE)] in 0.10 M H(2)SO(4) containing 0.030 M aniline. The as-produced PAN molecules took on a well-defined linear conformation stretching for 500 A or more, as shown by in situ and ex situ STM. The XPS and NEXAFS results indicated that the linear PAN seen at 1.0 V assumed the form of an emeraldine salt made of PAN chains and (bi)sulfate anions. Shifting the potential from 1.0 to 0.7 V altered the shape of the PAN molecules from straight to crooked, which was ascribed to restructuring of the Au(111) electrified interface on the basis of voltammetric and XPS results. In situ STM showed that further decreasing the potential to 0.5 V transformed the crooked PAN threads into a mostly linear form again, with preferential alignment and formation of some locally ordered structures. PAN molecules could be reduced from emeraldine to leucoemeraldine as the potential was decreased to 0.2 V or less. In situ STM showed that the fully reduced PAN molecules were straight but mysteriously shortened to approximately 50 A in length. The conformation of PAN did not recuperate when the potential was shifted positively to 1.0 V.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA