Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202418763, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39465459

RESUMEN

Lead halide perovskite solar cells (PSCs) have demonstrated power conversion efficiencies comparable to silicon-based solar cells, yet their instability under environmental stressors, such as humidity, heat, and light, remains a significant barrier to commercialization. A primary cause of this instability is the uncoordinated lead ions (Pb2+), which accelerates the degradation of PSCs and pose environmental concerns due to potential lead leakage. Recently, the introduction of ligands into PSCs has shown promise in mitigating lead toxicity through effective passivation, primarily by forming hydrogen bonds (H-bonds) between functional groups of the ligands and the perovskite structure. In this minireview, we explore the critical role of H-bonds in stabilizing PSCs by enhancing the structural integrity of the perovskite layer and reducing lead leakage. Furthermore, we discuss the contribution of these ligands in defect passivation, hydrophobicity, self-encapsulation, cross-linking, and self-healing mechanisms. These insights will highlight the multi-functional capabilities of ligands in improving the long-term stability and durability of PSCs, offering pathways to address current challenges in their commercialization.

2.
Nanotechnology ; 31(27): 275407, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32197259

RESUMEN

Antireflection (AR) film is a widely used technology to enhance the performance of photovoltaic devices that require transparent electrodes in the photovoltaic industry. At present, several AR films including monolayer MgF2 or multilayered composite films, textured polydimethylsiloxane (PDMS) and porous SiO2 have been successfully applied due to their excellent properties. Nevertheless, all of the above-mentioned AR films have some minor drawbacks to overcome, for instance, the cost or thermal durability. Herein, we report a cost-effective and low-temperature method to fabricate a mesoporous aluminum oxide (meso-Al2O3) layer as the AR coating with high thermal durability, which will meet the fabrication condition of various photovoltaic devices. Briefly, the process begins at magnetron sputtering a compact Al2O3 film, which shows no AR effect, followed by a hot water treatment at 80 °C to turn the compact film into a mesoporous film with graded-index and AR effect. The application of meso-Al2O3 AR film enhances the maximum transmittance of our laboratory-used fluorine-doped tin oxide (FTO) from 84% to 89%, which is in good agreement with our theoretical simulation named graded-index approximation. Taking perovskite solar cells (PSCs) as an example, planar PSCs with meso-Al2O3 AR film deliver excellent photon conversion efficiency of 21.5%, which is higher than that of cells without meso-Al2O3 AR film (20.9%).

3.
Opt Express ; 23(3): 3292-8, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25836187

RESUMEN

We report the design and fabrication of a compact multi-core fiber fan-in/fan-out using a grating coupler array on the SOI platform. The grating couplers are fully-etched, enabling the whole circuit to be fabricated in a single lithography and etching step. Thanks to the apodized design for the grating couplers and the introduction of an aluminum reflective mirror, a highest coupling efficiency of -3.8 dB with 3 dB coupling bandwidth of 48 nm and 1.5 dB bandwidth covering the whole C band, together with crosstalk lower than -32 dB are demonstrated.

4.
Opt Express ; 22(19): 23007-18, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25321771

RESUMEN

An analytical expression for the mode coupling coefficient in homogeneous trench-assisted multi-core fibers is derived, which has a simple relationship with the one in normal step-index structures. The amount of inter-core crosstalk reduction (in dB) with trench-assisted structures compared to the one with normal step-index structures can then be written by a simple expression. Comparison with numerical simulations confirms that the obtained analytical expression has very good accuracy for crosstalk estimation. The crosstalk properties in trench-assisted multi-core fibers, such as crosstalk dependence on core pitch and wavelength-dependent crosstalk, can be obtained by this simple analytical expression.


Asunto(s)
Simulación por Computador , Luz , Modelos Teóricos , Refractometría/instrumentación , Dispersión de Radiación , Diseño de Equipo , Análisis de Regresión
5.
JOR Spine ; 5(3): e1218, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36203863

RESUMEN

Backgrounds: Cartilaginous endplate (CEP) plays an essential role in intervertebral disc (IVD) health and disease. The aim was to compare the CEP structure of lumbar IVD and to reveal the detailed pattern of integration between the CEP and bony endplate (BEP) from different species. Methods: A total of 34 IVDs (5 human, 5 goat, 8 pig, 8 rabbit, and 8 rat IVDs) were collected, fixed and midsagittally cut; in each IVD, one-half was used for histological staining to observe the CEP morphology, and the other half was used for scanning electron microscopy (SEM) analysis to measure the diameters and distributions of collagen fibers in the central and peripheral CEP areas and to observe the pattern of CEP-BEP integration from different species. Results: The human, pig, goat, and rabbit IVDs had the typical BEP-CEP structure, but the rat CEP was directly connected with the growth plate. Human CEP was the thickest (896.95 ± 87.71 µm) among these species, followed by pig, goat, rat, and rabbit CEPs. Additionally, the mean cellular density of the rabbit CEP was the highest, which was 930 ± 202 per mm2, followed by the rat, goat, pig, and human CEPs. In all the species, the collagen fiber diameter in the peripheral area was much bigger than that in the central area. The collagen fiber diameters of CEP from the human, pig, goat, and rat were distributed between 35 nm and 65 nm. The BEP and CEP were connected by the collagen from the CEP, aggregating into bundles or cross links with each other to form a network, and anchored to BEP. Conclusions: Significant differences in the thickness, cellular density, and collagen characterization of CEPs from different species were demonstrated; the integration of BEP-CEP in humans, pigs, goats, and rabbits was mainly achieved by the collagen bundles anchoring system, while the typical BEP-CEP interface did not exist in rats.

6.
Nat Commun ; 13(1): 7425, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460647

RESUMEN

Formamidinium lead iodide (FAPbI3) perovskites are promising emitters for near-infrared light-emitting diodes. However, their performance is still limited by defect-assisted nonradiative recombination and band offset-induced carrier aggregation at the interface. Herein, we introduce a couple of cadmium salts with acetate or halide anion into the FAPbI3 perovskite precursors to synergistically passivate the material defects and optimize the device band structure. Particularly, the perovskite analogs, containing zero-dimensional formamidinium cadmium iodide, one-dimensional δ-FAPbI3, two-dimensional FA2FAn-1PbnI3n+1, and three-dimensional α-FAPbI3, can be obtained in one pot and play a pivotal and positive role in energy transfer in the formamidinium iodide-rich lead-based perovskite films. As a result, the near-infrared FAPbI3-based devices deliver a maximum external quantum efficiency of 24.1% together with substantially improved operational stability. Combining our findings on defect passivation and energy transfer, we also achieve near-infrared light communication with device twins of light emitting and unprecedented self-driven detection.

7.
Adv Mater ; 33(3): e2007126, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33296122

RESUMEN

So far, the combination of methylammonium bromide/methylammonium chloride (MABr/MACl) or methylammonium iodide (MAI)/MACl is the most frequently used additives to stabilize formamidinium lead iodide (FAPbI3 ) fabricated by the sequential deposition method. However, the enlarged bandgap due to the addition of bromide and the ambiguous functions of these additives in lead iodide (PbI2 ) transformation are still worth considering. Herein, the roles of MACl in sequentially deposited Br-free FA-based perovskites are systematically investigated. It is found that MACl can finely regulate the PbI2 /FAI reaction, tune the phase transition at room temperature, and adjust intermediate-related perovskite crystallization and decomposition during thermal annealing. Compared to FAPbI3 , the perovskite with MACl exhibits larger grain, longer carrier lifetime, and reduced trap density. The resultant solar cell therefore achieves a champion power conversion efficiency (PCE) of 23.1% under reverse scan with a stabilized power output of 23.0%. In addition, it shows much improved photostability under 100 mW cm-2 white illumination (xenon lamp) in nitrogen atmosphere without encapsulation.

8.
ACS Appl Mater Interfaces ; 12(43): 48458-48466, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33073991

RESUMEN

Wide-band gap (WBG) mixed-halide perovskites have drawn much attention because of their excellent optoelectronic properties and the potential to be deployed in tandem solar cells. Nevertheless, the bromine incorporation inevitably leads to photoinduced phase segregation in WBG mixed-halide perovskites. Herein, potassium is used to effectively suppress photoinduced phase segregation, which is visualized with confocal photoluminescence microscopy imaging. Strikingly, the potassium passivation not only inhibits the formation of the narrow-band gap subphase but also enhances the crystallinity of the WBG mixed-halide perovskite. In addition, the potassium-passivated WBG perovskite exhibits lower defect density, longer charge carrier lifetime, and better photostability. As a result, the optimized KI (2 mol %)-passivated WBG perovskite solar cells (PSCs) deliver a champion power conversion efficiency of 18.3% with negligible hysteresis. They maintain 98% of their initial efficiency after 400 h under 100 mW·cm-2 white light illumination in nitrogen.

9.
ACS Appl Mater Interfaces ; 11(26): 23152-23159, 2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31184462

RESUMEN

The open-circuit voltage deficit is one of the main limiting factors for the further performance improvement in planar structured perovskite solar cells. In this work, we elaborately develop chlorine binding on the surface of tin oxide electron transport layer for a high open-circuit voltage device (1.195 V). The chlorine passivation on SnO2 not only effectively mitigates the interfacial charge recombination between SnO2 and perovskite but also enhances the binding of chlorine with lead at the SnO2/perovskite interface. The chlorine-passivated SnO2 electron transport layer exhibits a better energy alignment with the perovskite layer and an improved electron mobility, which will promote efficient electron transfer at the interface. In addition, the elevated Fermi level of SnO2 electron transport layer increases carrier extraction and suppresses interfacial recombination, which is responsible for the open-circuit voltage enhancement. Planar perovskite solar cells with chlorine-passivated SnO2 exhibit a higher open-circuit voltage of 1.195 V than that of reference ones (1.135 V) for a lower band gap of 1.58 eV perovskite absorbers, which achieve a power conversion efficiency of 20% with negligible hysteresis.

10.
Sci Rep ; 6: 39058, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-28000735

RESUMEN

Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than -30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10-9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA