Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
RSC Adv ; 13(26): 17556-17564, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37312995

RESUMEN

Remarkable progress has been made in the development of carbonized chitin nanofiber materials for various functional applications, including solar thermal heating, owing to their N- and O-doped carbon structures and sustainable nature. Carbonization is a fascinating process for the functionalization of chitin nanofiber materials. However, conventional carbonization techniques require harmful reagents, high-temperature treatment, and time-consuming processes. Although CO2 laser irradiation has progressed as a facile and second-scale high-speed carbonization process, CO2-laser-carbonized chitin nanofiber materials and their applications have not yet been explored. Herein, we demonstrate the CO2-laser-induced carbonization of chitin nanofiber paper (denoted as chitin nanopaper) and investigate the solar thermal heating performance of the CO2-laser-carbonized chitin nanopaper. While the original chitin nanopaper was inevitably burned out by CO2 laser irradiation, CO2-laser-induced carbonization of the chitin nanopaper was achieved by pretreatment with calcium chloride as a combustion inhibitor. The CO2-laser-carbonized chitin nanopaper exhibits excellent solar thermal heating performance; its equilibrium surface temperature under 1 sun irradiation is 77.7 °C, which is higher than those of the commercial nanocarbon films and the conventionally carbonized bionanofiber papers. This study paves the way for the high-speed fabrication of carbonized chitin nanofiber materials and their application in solar thermal heating toward the effective utilization of solar energy as heat.

2.
Nanomaterials (Basel) ; 13(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37177025

RESUMEN

Sustainable biomass-derived carbons have attracted research interest because of their ability to effectively absorb and convert solar light to thermal energy, a phenomenon known as solar thermal heating. Although their carbon-based molecular and nanoporous structures should be customized to achieve enhanced solar thermal heating performance, such customization has insufficiently progressed. In this study, we transformed a chitin nanofiber/water dispersion into paper, referred to as chitin nanopaper, with subwavelength nanoporous structures by spatially controlled drying, followed by temperature-controlled carbonization without any pretreatment to customize the carbon-based molecular structures. The optimal carbonization temperature for enhancing the solar absorption and solar thermal heating performance of the chitin nanopaper was determined to be 400 °C. Furthermore, we observed that the nitrogen component, which afforded nitrogen-doped carbon structures, and the high morphological stability of chitin nanofibers against carbonization, which maintained subwavelength nanoporous structures even after carbonization, contributed to the improved solar absorption of the carbonized chitin nanopaper. The carbonized chitin nanopaper exhibited a higher solar thermal heating performance than the carbonized cellulose nanopaper and commercial nanocarbon materials, thus demonstrating significant potential as an excellent solar thermal material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA