Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 174(1): 117-130.e14, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29909981

RESUMEN

Heterogeneity is a hallmark feature of the adaptive immune system in vertebrates. Following infection, naive T cells differentiate into various subsets of effector and memory T cells, which help to eliminate pathogens and maintain long-term immunity. The current model suggests there is a single lineage of naive T cells that give rise to different populations of effector and memory T cells depending on the type and amounts of stimulation they encounter during infection. Here, we have discovered that multiple sub-populations of cells exist in the naive CD8+ T cell pool that are distinguished by their developmental origin, unique transcriptional profiles, distinct chromatin landscapes, and different kinetics and phenotypes after microbial challenge. These data demonstrate that the naive CD8+ T cell pool is not as homogeneous as previously thought and offers a new framework for explaining the remarkable heterogeneity in the effector and memory T cell subsets that arise after infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Genes del Desarrollo , Listeria monocytogenes/patogenicidad , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Cromatina/metabolismo , Citocinas/farmacología , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/metabolismo , Memoria Inmunológica , Interferón gamma/metabolismo , Células Asesinas Naturales/citología , Células Asesinas Naturales/metabolismo , Listeria monocytogenes/metabolismo , Ratones , Ratones Endogámicos C57BL , Análisis de Componente Principal , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Timo/trasplante , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
2.
Proc Natl Acad Sci U S A ; 119(49): e2212548119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442114

RESUMEN

Microbial exposure during development can elicit long-lasting effects on the health of an individual. However, how microbial exposure in early life leads to permanent changes in the immune system is unknown. Here, we show that the microbial environment alters the set point for immune susceptibility by altering the developmental architecture of the CD8+ T cell compartment. In particular, early microbial exposure results in the preferential expansion of highly responsive fetal-derived CD8+ T cells that persist into adulthood and provide the host with enhanced immune protection against intracellular pathogens. Interestingly, microbial education of fetal-derived CD8+ T cells occurs during thymic development rather than in the periphery and involves the acquisition of a more effector-like epigenetic program. Collectively, our results provide a conceptual framework for understanding how microbial colonization in early life leads to lifelong changes in the immune system.


Asunto(s)
Linfocitos T CD8-positivos , Feto , Inmunidad , Diferenciación Celular , Escolaridad , Epigenómica , Feto/inmunología , Feto/microbiología
3.
Nat Nanotechnol ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684809

RESUMEN

Cellular programming of naïve T cells can improve the efficacy of adoptive T-cell therapy. However, the current ex vivo engineering of T cells requires the pre-activation of T cells, which causes them to lose their naïve state. In this study, cationic-polymer-functionalized nanowires were used to pre-program the fate of primary naïve CD8+ T cells to achieve a therapeutic response in vivo. This was done by delivering single or multiple microRNAs to primary naïve mouse and human CD8+ T cells without pre-activation. The use of nanowires further allowed for the delivery of large, whole lentiviral particles with potential for long-term integration. The combination of deletion and overexpression of miR-29 and miR-130 impacted the ex vivo T-cell differentiation fate from the naïve state. The programming of CD8+ T cells using nanowire-delivered co-delivery of microRNAs resulted in the modulation of T-cell fitness by altering the T-cell proliferation, phenotypic and transcriptional regulation, and secretion of effector molecules. Moreover, the in vivo adoptive transfer of murine CD8+ T cells programmed through the nanowire-mediated dual delivery of microRNAs provided enhanced immune protection against different types of intracellular pathogen (influenza and Listeria monocytogenes). In vivo analyses demonstrated that the simultaneous alteration of miR-29 and miR-130 levels in naïve CD8+ T cells reduces the persistence of canonical memory T cells whereas increases the population of short-lived effector T cells. Nanowires could potentially be used to modulate CD8+ T-cell differentiation and achieve a therapeutic response in vivo without the need for pre-activation.

4.
Sci Immunol ; 9(92): eadf8776, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38394230

RESUMEN

CD8+ T cells are classically recognized as adaptive lymphocytes based on their ability to recognize specific foreign antigens and mount memory responses. However, recent studies indicate that some antigen-inexperienced CD8+ T cells can respond to innate cytokines alone in the absence of cognate T cell receptor stimulation, a phenomenon referred to as bystander activation. Here, we demonstrate that neonatal CD8+ T cells undergo a robust and diverse program of bystander activation, which corresponds to enhanced innate-like protection against unrelated pathogens. Using a multi-omics approach, we found that the ability of neonatal CD8+ T cells to respond to innate cytokines derives from their capacity to undergo rapid chromatin remodeling, resulting in the usage of a distinct set of enhancers and transcription factors typically found in innate-like T cells. We observed that the switch between innate and adaptive functions in the CD8+ T cell compartment is mediated by changes in the abundance of distinct subsets of cells. The innate CD8+ T cell subset that predominates in early life was also present in adult mice and humans. Our findings provide support for the layered immune hypothesis and indicate that the CD8+ T cell compartment is more functionally diverse than previously thought.


Asunto(s)
Linfocitos T CD8-positivos , Inmunidad Innata , Humanos , Adulto , Ratones , Animales , Citocinas , Subgrupos de Linfocitos T , Antígenos
5.
Cell Rep ; 37(6): 109969, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34758312

RESUMEN

MicroRNAs (miRNAs) have emerged as critical regulators of cell fate in the CD8+ T cell response to infection. Although there are several examples of miRNAs acting on effector CD8+ T cells after infection, it is unclear whether differential expression of one or more miRNAs in the naive state is consequential in altering their long-term trajectory. To answer this question, we examine the role of miR-29 in neonatal and adult CD8+ T cells, which express different amounts of miR-29 only prior to infection and adopt profoundly different fates after immune challenge. We find that manipulation of miR-29 expression in the naive state is sufficient for age-adjusting the phenotype and function of CD8+ T cells, including their regulatory landscapes and long-term differentiation trajectories after infection. Thus, miR-29 acts as a developmental switch by controlling the balance between a rapid effector response in neonates and the generation of long-lived memory in adults.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica , Listeriosis/inmunología , Activación de Linfocitos/inmunología , MicroARNs/genética , Adolescente , Adulto , Factores de Edad , Animales , Linfocitos T CD8-positivos/microbiología , Diferenciación Celular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Listeria monocytogenes/inmunología , Listeriosis/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA