Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Histochem Cell Biol ; 162(1-2): 149-159, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38811432

RESUMEN

The development of progressively sophisticated tools complemented by the integration of live cell imaging enhances our understanding of the four-dimensional (4D) nucleome, revealing elaborate molecular interactions and chromatin states. Yet, the dynamics of chromosomes in relation to nuclear organelles or to each other across cell cycle in living cells are underexplored. We have developed photoconvertible GFP H3-Dendra2 stably expressing in PC3M cells. The nuclear lamina and perinucleolar associated heterochromatin or diffuse chromosome regions were photoconverted through a single-point activation using a confocal microscope. The results demonstrated a dynamic nature for both types of chromosomes in the same cell cycle and across mitosis. While some chromosome domains were heritably associated with either nuclear lamina or nucleoli, others changed alliance to different nuclear organelles postmitotically. In addition, co-photoconverted chromosome domains often do not stay together within the same cell cycle and across mitosis, suggesting a transient nature of chromosome neighborhoods. Long-range spreading and movement of chromosomes were also observed. Interestingly, when cells were treated with a low concentration of actinomycin D that inhibits Pol I transcription through intercalating GC-rich DNA, chromosome movement was significantly blocked. Treatment with another Pol I inhibitor, metarrestin, which does not impact DNA, had little effect on the movement, suggesting that the DNA structure itself plays a role in chromosome dynamics. Furthermore, inhibition of Pol II transcription with α-amanitin also reduced the chromosome movement, demonstrating that Pol II, but not Pol I transcription, is important for chromosome dynamics in the nucleus.


Asunto(s)
Núcleo Celular , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/química , Cromosomas/metabolismo , Orgánulos/metabolismo , Orgánulos/química
2.
Opt Lett ; 49(8): 1880-1883, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621029

RESUMEN

Hyperreflective foci (HRFs) appear in optical coherence tomography (OCT) images of the retina and vitreous of patients with various ocular diseases. HRFs are hypothesized to be immune cells that appear in response to ischemia or tissue damage. To accurately identify HRFs and establish their clinical significance, it is necessary to replicate the detection of similar patterns in vivo in a small animal model. We combined visible-light OCT with temporal speckle averaging (TSA) to visualize and track vitreal HRFs (VHRFs) densities for three days after an optic nerve crush (ONC) injury. Resulting vis-OCT images revealed that VHRF density significantly increased approximately 10-fold at 12 h after ONC and returned to baseline three days after ONC. Additional immunohistochemistry results confirmed these VHRFs as inflammatory cells induced from optic nerve damage.


Asunto(s)
Traumatismos del Nervio Óptico , Tomografía de Coherencia Óptica , Humanos , Ratones , Animales , Tomografía de Coherencia Óptica/métodos , Retina/diagnóstico por imagen , Traumatismos del Nervio Óptico/diagnóstico por imagen , Nervio Óptico/diagnóstico por imagen
3.
Nano Lett ; 23(16): 7253-7259, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37463268

RESUMEN

Single-molecule localization microscopy (SMLM) enables the visualization of cellular nanostructures in vitro with sub-20 nm resolution. While substructures can generally be imaged with SMLM, the structural understanding of the images remains elusive. To better understand the link between SMLM images and the underlying structure, we developed a Monte Carlo (MC) simulation based on experimental imaging parameters and geometric information to generate synthetic SMLM images. We chose the nuclear pore complex (NPC), a nanosized channel on the nuclear membrane which gates nucleo-cytoplasmic transport of biomolecules, as a test geometry for testing our MC model. Using the MC model to simulate SMLM images, we first optimized our clustering algorithm to separate >106 molecular localizations of fluorescently labeled NPC proteins into hundreds of individual NPCs in each cell. We then illustrated using our MC model to generate cellular substructures with different angles of labeling to inform our structural understanding through the SMLM images obtained.


Asunto(s)
Microscopía , Imagen Individual de Molécula , Método de Montecarlo , Imagen Individual de Molécula/métodos , Algoritmos , Simulación por Computador
4.
J Biomed Opt ; 29(Suppl 1): S11502, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37795311

RESUMEN

Significance: The dual-wedge prism (DWP)-based spectroscopic single-molecule localization microscopy (sSMLM) system offers improved localization precision and adjustable spectral or localization performance, but its nonlinear spectral dispersion presents a challenge. A systematic method can help understand the challenges and thereafter optimize the DWP system's performance by customizing the system parameters to maximize the spectral or localization performance for various molecular labels. Aim: We developed a Monte Carlo (MC)-based model that predicts the imaging output of the DWP-based sSMLM system given different system parameters. Approach: We assessed our MC model's localization and spectral precisions by comparing our simulation against theoretical equations and fluorescent microspheres. Furthermore, we simulated the DWP-based system using beamsplitters (BSs) with a reflectance (R):transmittance (T) of R50:T50 and R30:T70 and their tradeoffs. Results: Our MC simulation showed average deviations of 2.5 and 2.1 nm for localization and spectral precisions against theoretical equations and 2.3 and 1.0 nm against fluorescent microspheres. An R30:T70 BS improved the spectral precision by 8% but worsened the localization precision by 35% on average compared with an R50:T50 BS. Conclusions: The MC model accurately predicted the localization precision, spectral precision, spectral peaks, and spectral widths of fluorescent microspheres, as validated by experimental data. Our work enhances the theoretical understanding of DWP-based sSMLM for multiplexed imaging, enabling performance optimization.


Asunto(s)
Microscopía , Imagen Individual de Molécula , Método de Montecarlo , Simulación por Computador , Análisis Espectral
5.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798392

RESUMEN

Single-molecule localization microscopy (SMLM) enables super-resolution imaging on conventional fluorescent microscopes. Spectroscopic SMLM (sSMLM) further allows highly multiplexed super-resolution imaging. We report an easy-to-implement symmetrically dispersed dual-wedge prism (SDDWP)-sSMLM design that maximizes photon utilization. We first symmetrically dispersed photons to the -1st and +1st orders in an optical assembly using two identical dual-wedge prisms (DWPs). Then we computationally extracted the fluorophores' spatial position and spectral characteristics using photons in both the -1st and +1st orders. Theoretical analysis and experimental validation showed lateral and spectral precisions of 10.1 nm and 0.3 nm, respectively, representing improvements of 28% and 48% over our previous DWP-based system, where emitted photons are divided separately for spatial and spectral analyses.

6.
bioRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38915582

RESUMEN

Single-particle tracking demonstrates that individual filaments in bundles of vimentin intermediate filaments are transported in the cytoplasm by motor proteins along microtubules. Furthermore, using 3D FIB-SEM the authors showed that vimentin filament bundles are loosely packed and coaligned with microtubules. Vimentin intermediate filaments (VIFs) form complex, tight-packed networks; due to this density, traditional ensemble labeling and imaging approaches cannot accurately discern single filament behavior. To address this, we introduce a sparse vimentin-SunTag labeling strategy to unambiguously visualize individual filament dynamics. This technique confirmed known long-range dynein and kinesin transport of peripheral VIFs and uncovered extensive bidirectional VIF motion within the perinuclear vimentin network, a region we had thought too densely bundled to permit such motility. To examine the nanoscale organization of perinuclear vimentin, we acquired high-resolution electron microscopy volumes of a vitreously frozen cell and reconstructed VIFs and microtubules within a ~50 µm3 window. Of 583 VIFs identified, most were integrated into long, semi-coherent bundles that fluctuated in width and filament packing density. Unexpectedly, VIFs displayed minimal local co-alignment with microtubules, save for sporadic cross-over sites that we predict facilitate cytoskeletal crosstalk. Overall, this work demonstrates single VIF dynamics and organization in the cellular milieu for the first time.

7.
Nanophotonics ; 11(8): 1527-1535, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35873202

RESUMEN

By manipulating the spectral dispersion of detected photons, spectroscopic single-molecule localization microscopy (sSMLM) permits concurrent high-throughput single-molecular spectroscopic analysis and imaging. Despite its promising potential, using discrete optical components and managing the delicate balance between spectral dispersion and spatial localization compromise its performance, including non-uniform spectral dispersion, high transmission loss of grating, high optical alignment demands, and reduced precision. We designed a dual-wedge prism (DWP)-based monolithic imaging spectrometer to overcome these challenges. We optimized the DWP for spectrally dispersing focused beam without deviation and with minimal wavefront error. We integrated all components into a compact assembly, minimizing total transmission loss and significantly reducing optical alignment requirements. We show the feasibility of DWP using ray-tracing and numerical simulations. We validated our numerical simulations by experimentally imaging individual nanospheres and confirmed that DWP-sSMLM achieved much improved spatial and spectral precisions of grating-based sSMLM. We also demonstrated DWP-sSMLM in 3D multi-color imaging of cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA