Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 163(3): 571-82, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26496604

RESUMEN

The bacteria Yersinia pestis is the etiological agent of plague and has caused human pandemics with millions of deaths in historic times. How and when it originated remains contentious. Here, we report the oldest direct evidence of Yersinia pestis identified by ancient DNA in human teeth from Asia and Europe dating from 2,800 to 5,000 years ago. By sequencing the genomes, we find that these ancient plague strains are basal to all known Yersinia pestis. We find the origins of the Yersinia pestis lineage to be at least two times older than previous estimates. We also identify a temporal sequence of genetic changes that lead to increased virulence and the emergence of the bubonic plague. Our results show that plague infection was endemic in the human populations of Eurasia at least 3,000 years before any historical recordings of pandemics.


Asunto(s)
Peste/microbiología , Yersinia pestis/clasificación , Yersinia pestis/aislamiento & purificación , Animales , Asia , ADN Bacteriano/genética , Europa (Continente) , Historia Antigua , Historia Medieval , Humanos , Peste/historia , Peste/transmisión , Siphonaptera/microbiología , Diente/microbiología , Yersinia pestis/genética
2.
Nature ; 538(7624): 201-206, 2016 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-27654912

RESUMEN

Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.


Asunto(s)
Variación Genética/genética , Genoma Humano/genética , Genómica , Tasa de Mutación , Filogenia , Grupos Raciales/genética , Animales , Australia , Población Negra/genética , Conjuntos de Datos como Asunto , Genética de Población , Historia Antigua , Migración Humana/historia , Humanos , Nativos de Hawái y Otras Islas del Pacífico/genética , Hombre de Neandertal/genética , Nueva Guinea , Análisis de Secuencia de ADN , Especificidad de la Especie , Factores de Tiempo
3.
Mol Genet Genomics ; 294(6): 1547-1559, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31372716

RESUMEN

Distinctive peculiarities of Armenians such as their millennia-long genetic isolation and strong national identity attract a keen interest while studying the demographic history of the West Asia. Here, to examine their fine-scale matrilineal genetic structure, ancestry and relationships with neighboring populations, we analyzed 536 complete mitogenomes (141 of which are novel) from 8 geographically different Armenian populations, covering the whole stretch of historical Armenia. The observed patterns highlight a remarkable degree of matrilineal genetic heterogeneity and weak population structuring of Armenians. Moreover, our phylogeographic analysis reveals common ancestries for some mtDNA lineages shared by West Asians, Transcaucasians, Europeans, Central Asians and Armenians. About third of the mtDNA subhaplogroups found in Armenian gene pool might be considered as Armenian-specific, as these are virtually absent elsewhere in Europe, West Asia and Transcaucasia. Coalescence ages of most of these lineages do not exceed 3.1 kya and coincide well with the population size growth started around 1.8-2.8 kya detectable only in the Bayesian Skyline Plots based on the Armenian-specific mtDNA haplotypes.


Asunto(s)
Genoma Mitocondrial , Armenia , Asia Central , Asia Occidental , ADN Mitocondrial/química , Europa (Continente) , Variación Genética , Haplotipos , Humanos , Filogenia , Filogeografía
4.
PLoS Genet ; 11(4): e1005068, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25898006

RESUMEN

The Turkic peoples represent a diverse collection of ethnic groups defined by the Turkic languages. These groups have dispersed across a vast area, including Siberia, Northwest China, Central Asia, East Europe, the Caucasus, Anatolia, the Middle East, and Afghanistan. The origin and early dispersal history of the Turkic peoples is disputed, with candidates for their ancient homeland ranging from the Transcaspian steppe to Manchuria in Northeast Asia. Previous genetic studies have not identified a clear-cut unifying genetic signal for the Turkic peoples, which lends support for language replacement rather than demic diffusion as the model for the Turkic language's expansion. We addressed the genetic origin of 373 individuals from 22 Turkic-speaking populations, representing their current geographic range, by analyzing genome-wide high-density genotype data. In agreement with the elite dominance model of language expansion most of the Turkic peoples studied genetically resemble their geographic neighbors. However, western Turkic peoples sampled across West Eurasia shared an excess of long chromosomal tracts that are identical by descent (IBD) with populations from present-day South Siberia and Mongolia (SSM), an area where historians center a series of early Turkic and non-Turkic steppe polities. While SSM matching IBD tracts (> 1cM) are also observed in non-Turkic populations, Turkic peoples demonstrate a higher percentage of such tracts (p-values ≤ 0.01) compared to their non-Turkic neighbors. Finally, we used the ALDER method and inferred admixture dates (~9th-17th centuries) that overlap with the Turkic migrations of the 5th-16th centuries. Thus, our results indicate historical admixture among Turkic peoples, and the recent shared ancestry with modern populations in SSM supports one of the hypothesized homelands for their nomadic Turkic and related Mongolic ancestors.


Asunto(s)
Cromosomas/genética , Flujo Génico , Genética de Población , Migración Humana/historia , Asia , Pueblo Asiatico/genética , Pueblo Asiatico/historia , China , Cromosomas Humanos Y/genética , Etnicidad/genética , Etnicidad/historia , Europa (Continente) , Genotipo , Historia del Siglo XV , Historia del Siglo XVI , Historia del Siglo XVII , Historia Medieval , Humanos , Lenguaje , Medio Oriente , Mongolia , Polimorfismo de Nucleótido Simple/genética , Siberia
5.
Postepy Hig Med Dosw (Online) ; 71(0): 895-900, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29151065

RESUMEN

INTRODUCTION: Type 2 diabetes mellitus (T2DM) and obesity are metabolic disorders whose major hallmark is insulin resistance. Impaired mitochondrial activity, such as reduced ratio of energy production to respiration, has been implicated in the development of insulin resistance. Uncoupling proteins (UCPs) are proton carriers, expressed in the mitochondrial inner membrane, that uncouple oxygen consumption by the respiratory chain from ATP synthesis. AIM: The aim of the study was to determine transcriptional levels of UCP1 and UCP2 in peripheral blood mononuclear cells (PBMCs) from patients with metabolic disorders: T2DM, obesity and from healthy individuals. MATERIAL/METHODS: The mRNA levels of UCP1, UCP2 were determined by Real-Time PCR method using Applied Biosystems assays. RESULTS: The UCP1 mRNA expression level was not detectable in the majority of studied samples, while very low expression was found in PBMCs from 3 obese persons. UCP2 mRNA expression level was detectable in all samples. The median mRNA expression of UCP2 was lower in all patients with metabolic disorders as compared to the controls (0.20+0.14 vs. 0.010+0.009, p=0.05). When compared separately, the differences of medians UCP2 mRNA expression level between the obese individuals and the controls as well as between the T2DM patients and the controls did not reach statistical significance. CONCLUSIONS: Decreased UCP2 gene expression in mononuclear cells from obese and diabetic patients might contribute to the immunological abnormalities in these metabolic disorders and suggests its role as a candidate gene in future studies of obesity and diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Obesidad/metabolismo , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 2/metabolismo , Adulto , Proteínas Portadoras/metabolismo , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/genética , Femenino , Humanos , Resistencia a la Insulina/genética , Leucocitos Mononucleares/metabolismo , Masculino , Proteínas de Transporte de Membrana/metabolismo , Persona de Mediana Edad , Mitocondrias/metabolismo , Proteínas Mitocondriales , Obesidad/genética , ARN Mensajero/metabolismo
6.
J Hum Genet ; 61(3): 181-91, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26607180

RESUMEN

As a result of the combination of great linguistic and cultural diversity, the highland populations of Daghestan present an excellent opportunity to test the hypothesis of language-gene coevolution at a fine geographic scale. However, previous genetic studies generally have been restricted to uniparental markers and have not included many of the key populations of the region. To improve our understanding of the genetic structure of Daghestani populations and to investigate possible correlations between genetic and linguistic variation, we analyzed ~550,000 autosomal single nucleotide polymorphisms, phylogenetically informative Y chromosome markers and mtDNA haplotypes in 21 ethnic Daghestani groups. We found high levels of population structure in Daghestan consistent with the hypothesis of long-term isolation among populations of the highland Caucasus. Highland Daghestani populations exhibit extremely high levels of between-population diversity for all genetic systems tested, leading to some of the highest FST values observed for any region of the world. In addition, we find a significant positive correlation between gene and language diversity, suggesting that these two aspects of human diversity have coevolved as a result of historical patterns of social interaction among highland farmers at the community level. Finally, our data are consistent with the hypothesis that most Daghestanian-speaking groups descend from a common ancestral population (~6000-6500 years ago) that spread to the Caucasus by demic diffusion followed by population fragmentation and low levels of gene flow.


Asunto(s)
Evolución Molecular , Genética de Población , Lingüística , Cromosomas Humanos Y , ADN Mitocondrial/genética , Daguestán , Marcadores Genéticos , Haplotipos , Humanos , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal
7.
Sci Rep ; 14(1): 9528, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664411

RESUMEN

The newly excavated rockshelter of Yeghegis-1 in Armenia reflects an occupation of five centuries, as attested by radiocarbon dates from ∼ 4100 to 4000 cal BCE in the lowest layer to ∼ 3600-3500 cal BCE at the top. It is a partially collapsed cave in which pastoralists, we hypothesize, wintered with their herds. The stone tool assemblage is predominantly obsidian (92.1%), despite the shelter being > 60 km on foot from the nearest sources. We use obsidian sourcing to investigate two purported trends in the Southern Caucasus during the Chalcolithic Period: (1) occupation of more varied high-altitude environments and (2) more expansive social networks. Our data show both trends were dynamic phenomena. There was a greater balance in use of the nearest pasturelands over time, perhaps linked to risk management and/or resource sustainability. During later occupations, artifacts from distant sources reveal more extensive connections. This increase in connectivity likely played a central role in the shifts in societal complexity that gave rise to widely shared material culture throughout the Armenian Highlands around the start of the Early Bronze Age. In such a model, greater social connectivity becomes a key mechanism for, rather than a product of, the spread of cultural and/or technological innovations.

8.
iScience ; 27(6): 110016, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38883810

RESUMEN

West and South Asian populations profoundly influenced Eurasian genetic and cultural diversity. We investigate the genetic history of the Y chromosome haplogroup L1-M22, which, while prevalent in these regions, lacks in-depth study. Robust Bayesian analyses of 165 high-coverage Y chromosomes favor a West Asian origin for L1-M22 ∼20.6 thousand years ago (kya). Moreover, this haplogroup parallels the genome-wide genetic ancestry of hunter-gatherers from the Iranian Plateau and the Caucasus. We characterized two L1-M22 harboring population groups during the Early Holocene. One expanded with the West Asian Neolithic transition. The other moved to South Asia ∼8-6 kya but showed no expansion. This group likely participated in the spread of Dravidian languages. These South Asian L1-M22 lineages expanded ∼4-3 kya, coinciding with the Steppe ancestry introduction. Our findings advance the current understanding of Eurasian historical dynamics, emphasizing L1-M22's West Asian origin, associated population movements, and possible linguistic impacts.

9.
Biochimie ; 218: 162-173, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37863280

RESUMEN

Cardiometabolic diseases (CMDs) are complex disorders with a heterogenous phenotype, which are caused by multiple factors including genetic factors. Single nucleotide polymorphisms (SNPs) rs45539933 (p.Ala64Thr), rs10011540 (c.-112A>C), rs3811791 (c.-1766A>G), and rs1800592 (c.-3826A>G) in the UCP1 gene have been analyzed for association with CMDs in many studies providing controversial results. However, previous studies only considered individual UCP1 SNPs and did not evaluate them in an integrated manner, which is a more powerful approach to uncover genetic component of complex diseases. This study aimed to investigate associations between UCP1 genotype combinations and CMDs or CMD risk factors in the context of non-genetic factors. We performed multiple logistic regression analysis and proposed new methodology of testing different combinations of SNP genotypes. We found that probability of CMDs increased in presence of the three-SNP combination of genotypes with minor alleles of c.-3826A>G and p.Ala64Thr and wild allele of c.-112A>C, with increasing age, body mass index (BMI), body fat percentage (BF%) and may differ between sexes and between countries. The combination of genotypes with c.-3826A>G minor allele and wild homozygotes of c.-112A>C and p.Ala64Thr was associated with increased probability of diabetes. While combination of genotypes with minor alleles of all three SNPs reduced the CMD probability. The present results suggest that age, BMI, sex, and UCP1 three-SNP combinations of genotypes significantly contribute to CMD probability. Varying of c.-112A>C alleles in the genotype combination with minor alleles of c.-3826A>G and p.Ala64Thr markedly changes CMD probability.


Asunto(s)
Enfermedades Cardiovasculares , Canales Iónicos , Humanos , Proteína Desacopladora 1/genética , Canales Iónicos/genética , Genotipo , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Alelos , Enfermedades Cardiovasculares/genética , Predisposición Genética a la Enfermedad
10.
Mol Biol Evol ; 29(1): 359-65, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21917723

RESUMEN

The Caucasus, inhabited by modern humans since the Early Upper Paleolithic and known for its linguistic diversity, is considered to be important for understanding human dispersals and genetic diversity in Eurasia. We report a synthesis of autosomal, Y chromosome, and mitochondrial DNA (mtDNA) variation in populations from all major subregions and linguistic phyla of the area. Autosomal genome variation in the Caucasus reveals significant genetic uniformity among its ethnically and linguistically diverse populations and is consistent with predominantly Near/Middle Eastern origin of the Caucasians, with minor external impacts. In contrast to autosomal and mtDNA variation, signals of regional Y chromosome founder effects distinguish the eastern from western North Caucasians. Genetic discontinuity between the North Caucasus and the East European Plain contrasts with continuity through Anatolia and the Balkans, suggesting major routes of ancient gene flows and admixture.


Asunto(s)
Emigración e Inmigración/historia , Flujo Génico , Algoritmos , Antropología Física , Pueblo Asiatico/genética , Cromosomas Humanos Y , Análisis por Conglomerados , ADN , ADN Mitocondrial/genética , Genética de Población , Historia Antigua , Humanos , Lingüística , Transcaucasia , Población Blanca/genética
11.
Hum Biol ; 85(6): 859-900, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25079123

RESUMEN

The origin and history of the Ashkenazi Jewish population have long been of great interest, and advances in high-throughput genetic analysis have recently provided a new approach for investigating these topics. We and others have argued on the basis of genome-wide data that the Ashkenazi Jewish population derives its ancestry from a combination of sources tracing to both Europe and the Middle East. It has been claimed, however, through a reanalysis of some of our data, that a large part of the ancestry of the Ashkenazi population originates with the Khazars, a Turkic-speaking group that lived to the north of the Caucasus region ~1,000 years ago. Because the Khazar population has left no obvious modern descendants that could enable a clear test for a contribution to Ashkenazi Jewish ancestry, the Khazar hypothesis has been difficult to examine using genetics. Furthermore, because only limited genetic data have been available from the Caucasus region, and because these data have been concentrated in populations that are genetically close to populations from the Middle East, the attribution of any signal of Ashkenazi-Caucasus genetic similarity to Khazar ancestry rather than shared ancestral Middle Eastern ancestry has been problematic. Here, through integration of genotypes from newly collected samples with data from several of our past studies, we have assembled the largest data set available to date for assessment of Ashkenazi Jewish genetic origins. This data set contains genome-wide single-nucleotide polymorphisms in 1,774 samples from 106 Jewish and non-Jewish populations that span the possible regions of potential Ashkenazi ancestry: Europe, the Middle East, and the region historically associated with the Khazar Khaganate. The data set includes 261 samples from 15 populations from the Caucasus region and the region directly to its north, samples that have not previously been included alongside Ashkenazi Jewish samples in genomic studies. Employing a variety of standard techniques for the analysis of population-genetic structure, we found that Ashkenazi Jews share the greatest genetic ancestry with other Jewish populations and, among non-Jewish populations, with groups from Europe and the Middle East. No particular similarity of Ashkenazi Jews to populations from the Caucasus is evident, particularly populations that most closely represent the Khazar region. Thus, analysis of Ashkenazi Jews together with a large sample from the region of the Khazar Khaganate corroborates the earlier results that Ashkenazi Jews derive their ancestry primarily from populations of the Middle East and Europe, that they possess considerable shared ancestry with other Jewish populations, and that there is no indication of a significant genetic contribution either from within or from north of the Caucasus region.


Asunto(s)
Judíos/genética , Regiones de la Antigüedad/etnología , Europa (Continente)/etnología , Femenino , Genética de Población/métodos , Estudio de Asociación del Genoma Completo , Historia Antigua , Historia Medieval , Humanos , Judíos/historia , Masculino , Medio Oriente/etnología , Polimorfismo de Nucleótido Simple/genética
12.
Hum Biol ; 84(4): 405-22, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23249315

RESUMEN

The Hamshenis are an isolated geographic group of Armenians with a strong ethnic identity who, until the early decades of the twentieth century, inhabited the Pontus area on the southern coast of the Black Sea. Scholars hold alternative views on their origin, proposing Eastern Armenia, Western Armenia, and Central Asia, respectively, as their most likely homeland. To ascertain whether genetic data from the nonrecombining portion of the Y chromosome are supportive of any of these suggestions, we screened 82 Armenian males of Hamsheni descent for 12 biallelic and 6 microsatellite Y-chromosomal markers. These data were compared with the corresponding data set from the representative populations of the three candidate regions. Genetic difference between the Hamshenis and other groups is significant and backs up the hypothesis of the Armenian origin of the Hamshenis, indicating central historical Armenia as a homeland of the ancestral population. This inference is further strengthened by the results of admixture analysis, which does not support the Central-Asian hypothesis of the Hamshenis' origin. Genetic diversity values and patterns of genetic distances suggest a high degree of genetic isolation of the Hamshenis consistent with their retention of a distinct and ancient dialect of the Armenian language.


Asunto(s)
Cromosomas Humanos Y , Población Blanca/genética , Armenia , Asia Central , Variación Genética , Haplotipos , Migración Humana , Humanos , Masculino , Repeticiones de Microsatélite , Medio Oriente , Modelos Genéticos , Modelos Estadísticos , Filogeografía , Polimorfismo de Nucleótido Simple
13.
Front Immunol ; 13: 769900, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185875

RESUMEN

The novel SARS-CoV-2 coronavirus infection has become a global health concern, causing the COVID-19 pandemic. The disease symptoms and outcomes depend on the host immunity, in which the human leukocyte antigen (HLA) molecules play a distinct role. The HLA alleles have an inter-population variability, and understanding their link to the COVID-19 in an ethnically distinct population may contribute to personalized medicine. The present study aimed at detecting associations between common HLA alleles and COVID-19 susceptibility and severity in Armenians. In 299 COVID-19 patients (75 asymptomatic, 102 mild/moderate, 122 severe), the association between disease severity and classic HLA-I and II loci was examined. We found that the advanced age, male sex of patients, and sex and age interaction significantly contributed to the severity of the disease. We observed that an age-dependent effect of HLA-B*51:01 carriage [odds ratio (OR)=0.48 (0.28-0.80), Pbonf <0.036] is protective against severe COVID-19. Contrary, the HLA-C*04:01 allele, in a dose-dependent manner, was associated with a significant increase in the disease severity [OR (95% CI) =1.73 (1.20-2.49), Pbonf <0.021] and an advancing age (P<0.013). The link between HLA-C*04:01 and age was secondary to a stronger association between HLA-C*04:01 and disease severity. However, HLA-C*04:01 exerted a sex-dependent differential distribution between clinical subgroups [females: P<0.0012; males: P=0.48]. The comparison of HLA-C*04:01 frequency between subgroups and 2,781 Armenian controls revealed a significant incidence of HLA-C*04:01 deficiency in asymptomatic COVID-19. HLA-C*04:01 homozygous genotype in patients blueprinted a decrease in heterozygosity of HLA-B and HLA class-I loci. In HLA-C*04:01 carriers, these changes translated to the SARS-CoV-2 peptide presentation predicted inefficacy by HLA-C and HLA class-I molecules, simultaneously enhancing the appropriate HLA-B potency. In patients with clinical manifestation, due to the high prevalence of HLA-C*04:01, these effects provided a decrease of the HLA class-I heterozygosity and an ability to recognize SARS-CoV-2 peptides. Based on our observations, we developed a prediction model involving demographic variables and HLA-C*04:01 allele for the identification of potential cases with the risk of hospitalization (the area under the curve (AUC) = 86.2%) or severe COVID-19 (AUC =71%).


Asunto(s)
COVID-19/patología , Antígeno HLA-B51/genética , Antígenos HLA-C/genética , SARS-CoV-2/inmunología , Índice de Severidad de la Enfermedad , Adulto , Factores de Edad , Armenia , Femenino , Frecuencia de los Genes/genética , Antígeno HLA-B51/inmunología , Antígenos HLA-C/inmunología , Heterocigoto , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Riesgo , Factores Sexuales , Proteínas Virales/inmunología
14.
PLoS One ; 17(4): e0266386, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35482655

RESUMEN

Contribution of UCP1 single nucleotide polymorphisms (SNPs) to susceptibility for cardiometabolic pathologies (CMP) and their involvement in specific risk factors for these conditions varies across populations. We tested whether UCP1 SNPs A-3826G, A-1766G, Ala64Thr and A-112C are associated with common CMP and their risk factors across Armenia, Greece, Poland, Russia and United Kingdom. This case-control study included genotyping of these SNPs, from 2,283 Caucasians. Results were extended via systematic review and meta-analysis. In Armenia, GA genotype and A allele of Ala64Thr displayed ~2-fold higher risk for CMP compared to GG genotype and G allele, respectively (p<0.05). In Greece, A allele of Ala64Thr decreased risk of CMP by 39%. Healthy individuals with A-3826G GG genotype and carriers of mutant allele of A-112C and Ala64Thr had higher body mass index compared to those carrying other alleles. In healthy Polish, higher waist-to-hip ratio (WHR) was observed in heterozygotes A-3826G compared to AA homozygotes. Heterozygosity of A-112C and Ala64Thr SNPs was related to lower WHR in CMP individuals compared to wild type homozygotes (p<0.05). Meta-analysis showed no statistically significant odds-ratios across our SNPs (p>0.05). Concluding, the studied SNPs could be associated with the most common CMP and their risk factors in some populations.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedades Metabólicas , Polimorfismo de Nucleótido Simple , Proteína Desacopladora 1 , Enfermedades Cardiovasculares/genética , Estudios de Casos y Controles , Citidina Monofosfato , Predisposición Genética a la Enfermedad , Humanos , Enfermedades Metabólicas/genética , Prevalencia , Proteína Desacopladora 1/genética
15.
Am J Phys Anthropol ; 146(2): 171-8, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21826633

RESUMEN

The archeology and ethnology of Armenia suggest that this region has acted as a crossroads for human migrations from Europe and the Middle East since at least the Neolithic. Near continual foreign influx has, in turn, led to the supposition that the gene pools of geographically separated Armenian populations may have diverged as differing historical influences potentially left distinct genetic traces in the various regions of the Armenian plateau. In this study, we seek to address whether any evidence for such genetic regional partitioning in Armenians exists by analyzing, for the first time, 15 autosomal short tandem repeat (STR) loci in 404 Armenians from four geographically well-characterized collections (Ararat Valley, Gardman, Sasun, and Lake Van) that represent distinct communities from across Historical Armenia. In addition, to determine whether genetic differences among these four Armenian populations are the result of differential affinities to populations of known historical influence in Armenia, we utilize 27 biogeographically targeted reference populations for phylogenetic and admixture analyses. From these examinations, we find that while close genetic affiliations exist between the two easternmost Armenian groups analyzed, Ararat Valley and Gardman, the remaining two populations display substantial distinctions. In particular, Sasun is distinguished by evidence for genetic contributions from Turkey, while a stronger Balkan component is detected in Lake Van, potentially suggestive of remnant genetic influences from ancient Greek and Phrygian populations in this region.


Asunto(s)
Pueblo Asiatico/genética , Variación Genética , Repeticiones de Microsatélite , Población Blanca/genética , Armenia , Distribución de Chi-Cuadrado , Genética de Población , Humanos , Filogenia
16.
Sci Rep ; 11(1): 6659, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758277

RESUMEN

Human Y chromosome haplogroup J1-M267 is a common male lineage in West Asia. One high-frequency region-encompassing the Arabian Peninsula, southern Mesopotamia, and the southern Levant-resides ~ 2000 km away from the other one found in the Caucasus. The region between them, although has a lower frequency, nevertheless demonstrates high genetic diversity. Studies associate this haplogroup with the spread of farming from the Fertile Crescent to Europe, the spread of mobile pastoralism in the desert regions of the Arabian Peninsula, the history of the Jews, and the spread of Islam. Here, we study past human male demography in West Asia with 172 high-coverage whole Y chromosome sequences and 889 genotyped samples of haplogroup J1-M267. We show that this haplogroup evolved ~ 20,000 years ago somewhere in northwestern Iran, the Caucasus, the Armenian Highland, and northern Mesopotamia. The major branch-J1a1a1-P58-evolved during the early Holocene ~ 9500 years ago somewhere in the Arabian Peninsula, the Levant, and southern Mesopotamia. Haplogroup J1-M267 expanded during the Chalcolithic, the Bronze Age, and the Iron Age. Most probably, the spread of Afro-Asiatic languages, the spread of mobile pastoralism in the arid zones, or both of these events together explain the distribution of haplogroup J1-M267 we see today in the southern regions of West Asia.


Asunto(s)
Alelos , Cromosomas Humanos Y , Haplotipos , Teorema de Bayes , Evolución Molecular , Genética de Población , Humanos , Filogenia , Polimorfismo de Nucleótido Simple , Análisis Espacio-Temporal
18.
Nat Ecol Evol ; 3(6): 966-976, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31036896

RESUMEN

The indigenous populations of inner Eurasia-a huge geographic region covering the central Eurasian steppe and the northern Eurasian taiga and tundra-harbour tremendous diversity in their genes, cultures and languages. In this study, we report novel genome-wide data for 763 individuals from Armenia, Georgia, Kazakhstan, Moldova, Mongolia, Russia, Tajikistan, Ukraine and Uzbekistan. We furthermore report additional damage-reduced genome-wide data of two previously published individuals from the Eneolithic Botai culture in Kazakhstan (~5,400 BP). We find that present-day inner Eurasian populations are structured into three distinct admixture clines stretching between various western and eastern Eurasian ancestries, mirroring geography. The Botai and more recent ancient genomes from Siberia show a decrease in contributions from so-called 'ancient North Eurasian' ancestry over time, which is detectable only in the northern-most 'forest-tundra' cline. The intermediate 'steppe-forest' cline descends from the Late Bronze Age steppe ancestries, while the 'southern steppe' cline further to the south shows a strong West/South Asian influence. Ancient genomes suggest a northward spread of the southern steppe cline in Central Asia during the first millennium BC. Finally, the genetic structure of Caucasus populations highlights a role of the Caucasus Mountains as a barrier to gene flow and suggests a post-Neolithic gene flow into North Caucasus populations from the steppe.


Asunto(s)
Pueblo Asiatico , Flujo Génico , Geografía , Humanos , Federación de Rusia
19.
Ecol Evol ; 8(6): 3534-3542, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29607044

RESUMEN

Recent ancient DNA (aDNA) studies of human pathogens have provided invaluable insights into their evolutionary history and prevalence in space and time. Most of these studies were based on DNA extracted from teeth or postcranial bones. In contrast, no pathogen DNA has been reported from the petrous bone which has become the most desired skeletal element in ancient DNA research due to its high endogenous DNA content. To compare the potential for pathogenic aDNA retrieval from teeth and petrous bones, we sampled these elements from five ancient skeletons, previously shown to be carrying Yersinia pestis. Based on shotgun sequencing data, four of these five plague victims showed clearly detectable levels of Y. pestis DNA in the teeth, whereas all the petrous bones failed to produce Y. pestis DNA above baseline levels. A broader comparative metagenomic analysis of teeth and petrous bones from 10 historical skeletons corroborated these results, showing a much higher microbial diversity in teeth than petrous bones, including pathogenic and oral microbial taxa. Our results imply that although petrous bones are highly valuable for ancient genomic analyses as an excellent source of endogenous DNA, the metagenomic potential of these dense skeletal elements is highly limited. This trade-off must be considered when designing the sampling strategy for an aDNA project.

20.
Eur J Hum Genet ; 15(9): 911-6, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17568393

RESUMEN

In this review, some principal population genetic features of familial Mediterranean fever (FMF) are considered. These relate to the time and the place of founder mutations' origins, the role of ancient migrations and contacts between populations in the spatial spreading of the disorder, the influence of environmental factors and cultural traditions on the rate of FMF incidence, and possible selective advantage in carriers of FMF causing gene (MEFV) mutations.


Asunto(s)
Fiebre Mediterránea Familiar/genética , Características Culturales , Proteínas del Citoesqueleto/genética , Emigración e Inmigración , Ambiente , Genética de Población , Heterocigoto , Humanos , Mutación , Pirina , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA