Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

País de afiliación
Intervalo de año de publicación
1.
Biochem J ; 480(16): 1365-1377, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37589484

RESUMEN

High temperatures in the field hinder bread wheat high-yield production, mainly because of the adverse effects of heat over photosynthesis. The Yaqui Valley, the main wheat producer region in Mexico, is a zone prone to have temperatures over 30°C. The aim of this work was to test the flag leaf photosynthetic performance in 10 bread wheat genotypes grown under high temperatures in the field. The study took place during two seasons (2019-2020 and 2020-2021). In each season, control seeds were sown in December, while heat-stressed were sown in late January to subject wheat to heat stress (HS) during the grain-filling stage. HS reduced Grain yield from 20 to 58% in the first season. HS did not reduce chlorophyll content and light-dependent reactions were unaffected in any of the tested genotypes. Rubisco, chloroplast fructose 1,6-biphosphatase (FBPase), and sucrose phosphate synthase (SPS) activities were measured spectrophotometrically. Rubisco activity did not decrease under HS in any of the genotypes. FBPase activity was reduced by HS indicating that triose phosphate flux to starch synthesis was reduced, while SPS was not affected, and thus, sucrose synthesis was maintained. HS reduced aerial biomass in the 10 chosen genotypes. Genotypes SOKWB.1, SOKWB.3, and BORLAUG100 maintained their yield under HS, pointing to a potential success in their introduction in this region for breeding heat-tolerant bread wheat.


Asunto(s)
Ribulosa-Bifosfato Carboxilasa , Triticum , Triticum/genética , Temperatura , Fosfatos , Triosas
2.
Artículo en Inglés | MEDLINE | ID: mdl-38583741

RESUMEN

The white shrimp Penaeus (Litopenaeus) vannamei is the most cultivated shrimp worldwide. Compared to other shrimp species, it has higher resistance to adverse conditions. During hypoxia, the shrimp reduces oxygen consumption and adjusts energy metabolism via anaerobic glycolysis, among other strategies. Hexokinase (HK) is the first enzyme of glycolysis and a key regulation point. In mammals and other vertebrates, there are several tissue-specific HK isoforms with differences in expression and enzyme activity. In contrast, crustacean HKs have been relatively little studied. We studied the P. vannamei HK isoforms during hypoxia and reoxygenation. We cloned two HK1 sequences named HK1-long (1455 bp) and HK1-short (1302 bp), and one HK2 (1344 bp). In normoxia, total HK1 expression is higher in hepatopancreas, while HK2 is higher in gills. Severe hypoxia (1 mg/L of DO) after 12 h exposure and 1 h of reoxygenation increased HK1 expression in both organs, but HK2 expression changed differentially. In hepatopancreas, HK2 expression increased in 6 and 12 h of hypoxia but diminished to normoxia levels after reoxygenation. In gills, HK2 expression decreased after 12 h of hypoxia. HK activity increased in hepatopancreas after 12 h hypoxia, opposite to gills. These results indicate that shrimp HK isoforms respond to hypoxia and reoxygenation in a tissue-specific manner. Intracellular glucose levels did not change in any case, showing the shrimp ability to maintain glucose homeostasis during hypoxia.


Asunto(s)
Penaeidae , Animales , Penaeidae/metabolismo , Hexoquinasa/genética , Hexoquinasa/metabolismo , Secuencia de Aminoácidos , Hipoxia/metabolismo , Oxígeno/metabolismo , Isoformas de Proteínas/metabolismo , Glucosa/metabolismo , Hepatopáncreas/metabolismo , Mamíferos/metabolismo
3.
J Bioenerg Biomembr ; 55(2): 137-150, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36853470

RESUMEN

Animals suffer hypoxia when their oxygen consumption is larger than the oxygen available. Hypoxia affects the white shrimp Penaeus (Litopenaeus) vannamei, both in their natural habitat and in cultivation farms. Shrimp regulates some enzymes that participate in energy production pathways as a strategy to survive during hypoxia. Glucose-6-phosphatase (G6Pase) is key to maintain blood glucose homeostasis through gluconeogenesis and glycogenolysis. We previously reported a shrimp G6Pase gene (G6Pase1) and in this work, we report a second isoform that we named G6Pase2. The expression of the two isoforms was evaluated in oxygen limited conditions and during silencing of the transcription factor HIF-1. High G6Pase activity was detected in hepatopancreas followed by muscle and gills under good oxygen and feeding conditions. Gene expression of both isoforms was analyzed in normoxia, hypoxia and reoxygenation in hepatopancreas and gills, and in HIF-1-silenced shrimp. In fed shrimp with normal dissolved oxygen (DO) (5.0 mg L- 1 DO) the expression of G6Pase1 was detected in gills, but not in hepatopancreas or muscle, while G6Pase2 expression was undetectable in all three tissues. In hepatopancreas, G6Pase1 is induced at 3 and 48 h of hypoxia, while G6Pase2 is down-regulated in the same time points but in reoxygenation, both due to the knock-down of HIF-1. In gills, only G6Pase1 was detected, and was induced by the silencing of HIF-1 only after 3 h of reoxygenation. Therefore, the expression of the two isoforms appears to be regulated by HIF-1 at transcriptional level in response to oxygen deprivation and subsequent recovery of oxygen levels.


Asunto(s)
Glucosa-6-Fosfatasa , Penaeidae , Animales , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Penaeidae/genética , Penaeidae/metabolismo , Hipoxia/metabolismo , Oxígeno/metabolismo , Isoformas de Proteínas/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-37355162

RESUMEN

The shrimp Litopenaeus vannamei is the main farmed crustacean worldwide. This shrimp suffers environmental changes in oxygen availability that affect its energy metabolism. Pyruvate kinase (PK) catalyzes the last reaction of glycolysis and is key for the regulation of glycolysis and gluconeogenesis. There is ample knowledge about mammalian PK, but in crustaceans, the information is very scarce. In this study, we analyzed in silico the structures of the PK gene and protein. Also, the effects of hypoxia on gene expression, enzymatic activity, glucose, and lactate in hepatopancreas and muscle were analyzed. The PK gene is 15,103 bp and contains 11 exons and 10 introns, producing four mRNA variants by alternative splicing and named PK1, PK2, PK3 and PK4, that results in two proteins with longer C-terminus and two with a 12 bp insertion. The promoter contains putative binding sites for transcription factors (TF) that are typically involved in stress responses. The deduced amino acid sequences contain the classic domains, binding sites for allosteric effectors and potential reversible phosphorylation residues. Protein modeling indicates a homotetramer with highly conserved structure. The effect of hypoxia for 6 and 12 h showed tissue-specific patterns, with higher expression, enzyme activity and lactate in muscle, but higher glucose in hepatopancreas. Changes in response to hypoxia were detected at 12 h in expression with induction in muscle and reduction in hepatopancreas, while enzyme activity was maintained, and glucose and lactate decreased. These results show rapid changes in expression and metabolites, while enzyme activity was maintained to cope with short-term hypoxia.


Asunto(s)
Penaeidae , Piruvato Quinasa , Animales , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Oxígeno/metabolismo , Glucosa/metabolismo , Lactatos , Penaeidae/metabolismo , Mamíferos/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-34655741

RESUMEN

Hypoxia is a frequent stressor in marine environments with multiple adverse effects on marine species. The white shrimp Litopenaeus vannamei withstands hypoxic conditions by activating anaerobic metabolism with tissue-specific changes in glycolytic and gluconeogenic enzymes. In animal cells, glycolytic/gluconeogenic fluxes are highly controlled by the levels of fructose-2,6-bisphosphate (F-2,6-P2), a signal metabolite synthesized and degraded by the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2). PFK-2/FBPase-2 has been studied in vertebrates and some invertebrates, but as far as we know, there are no reports on PFK-2/FBPase-2 from crustaceans. In the present work, we obtained cDNA nucleotide sequences corresponding to two mRNAs for PFK-2/FBPase-2 and named them PFKFBP1 (1644 bp) and PFKFBP2 (1566 bp), from the white shrimp L. vannamei. The deduced PFKFBP1 and PFKFBP2 are 547 and 521 amino acids long, respectively. Both proteins share 99.23% of identity, and only differ in 26 additional amino acids present in the kinase domain of the PFKFBP1. The kinase and phosphatase domains are highly conserved in sequence and structure between both isoforms and other proteins from diverse taxa. Total expression of PFKFBP1-2 is tissue-specific, more abundant in gills than in hepatopancreas and undetectable in muscle. Moreover, severe hypoxia (1 mg/L of DO) decreased expression of PFKFBP1-2 in gills while anaerobic glycolysis was induced, as indicated by accumulation of cellular lactate. These results suggest that negative regulation of PFKFBP1-2 at expression level is necessary to set up anaerobic glycolysis in the cells during the response to hypoxia.


Asunto(s)
Penaeidae/enzimología , Penaeidae/genética , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Regulación hacia Abajo , Regulación Enzimológica de la Expresión Génica , Branquias/metabolismo , Hipoxia/enzimología , Hipoxia/genética , Ácido Láctico/metabolismo , Modelos Moleculares , Fosfofructoquinasa-2/química , Filogenia , Estructura Secundaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido
6.
Artículo en Inglés | MEDLINE | ID: mdl-35417748

RESUMEN

Hypoxic zones are spreading worldwide in marine environments affecting many organisms. Shrimp and other marine crustaceans can withstand environmental hypoxia using several strategies, including the regulation of energy producing metabolic pathways. Pyruvate carboxylase (PC) catalyzes the first reaction of gluconeogenesis to produce oxaloacetate from pyruvate. In mammals, PC also participates in lipogenesis, insulin secretion and other processes, but this enzyme has been scarcely studied in marine invertebrates. In this work, we characterized the gene encoding PC in the white shrimp Litopenaeus vannamei, modelled the protein structure and evaluated its gene expression in hepatopancreas during hypoxia, as well as glucose and lactate concentrations. The PC gene codes for a mitochondrial protein and has 21 coding exons and 4 non-coding exons that generate three transcript variants with differences only in the 5'-UTR. Total PC expression is more abundant in hepatopancreas compared to gills or muscle, indicating tissue-specific expression. Under hypoxic conditions of 1.53 mg/L dissolved oxygen, PC expression is maintained in hepatopancreas, indicating its key role even in energy-limited conditions. Finally, both glucose and lactate concentrations were maintained under hypoxia for 24-48 h in hepatopancreas.


Asunto(s)
Penaeidae , Piruvato Carboxilasa , Secuencia de Aminoácidos , Animales , Glucosa/metabolismo , Hepatopáncreas/metabolismo , Hipoxia/metabolismo , Lactatos/metabolismo , Mamíferos/metabolismo , Estructura Molecular , Penaeidae/metabolismo , Piruvato Carboxilasa/genética , Piruvato Carboxilasa/metabolismo
7.
J Bioenerg Biomembr ; 53(4): 449-461, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34043143

RESUMEN

The white shrimp Penaeus (Litopenaeus) vannamei is the most economically important crustacean species cultivated in the Western Hemisphere. This crustacean shifts its metabolism to survive under extreme environmental conditions such as hypoxia, although for a limited time. Glucose-6-phosphatase (G6Pase) is a key enzyme contributing to maintain blood glucose homeostasis through gluconeogenesis and glycogenolysis. To our knowledge, there are no current detailed studies about cDNA or gene sequences of G6Pase from any crustacean reported. Herein we report the shrimp P. (L.) vannamei cDNA and gene sequences. The gene contains seven exons interrupted by six introns. The deduced amino acid sequence has 35% identity to other homolog proteins, with the catalytic amino acids conserved and phylogenetically close to the corresponding invertebrate homologs. Protein molecular modeling predicted eight transmembrane helices with the catalytic site oriented towards the lumen of the endoplasmic reticulum. G6Pase expression under normoxic conditions was evaluated in hepatopancreas, gills, and muscle and the highest transcript abundance was detected in hepatopancreas. In response to different times of hypoxia, G6Pase mRNA expression did not change in hepatopancreas and became undetectable in muscle; however, in gills, its expression increased after 3 h and 24 h of oxygen limitation, indicating its essential role to maintain glycemic control in these conditions.


Asunto(s)
Clonación Molecular/métodos , Branquias/metabolismo , Gluconeogénesis/genética , Glucosa-6-Fosfatasa/metabolismo , Hepatopáncreas/metabolismo , Animales , Glucosa-6-Fosfatasa/genética , Penaeidae
8.
Artículo en Inglés | MEDLINE | ID: mdl-34496301

RESUMEN

The white shrimp Litopenaeus vannamei is exposed to hypoxic conditions in natural habitats and in shrimp farms. Hypoxia can retard growth, development and affect survival in shrimp. The hypoxia-inducible factor 1 (HIF-1) regulates many genes involved in glucose metabolism, antioxidant proteins, including metallothionein (MT) and apoptosis. In previous studies we found that the L. vannamei MT gene expression changed during hypoxia, and MT silencing altered cell apoptosis; in this study we investigated whether the silencing of HIF-1 affected MT expression and apoptosis. Double-stranded RNA (dsRNA) was used to silence HIF-1α and HIF-1ß under normoxia, hypoxia, and hypoxia plus reoxygenation. Expression of HIF-1α, HIF-1ß and MT, and apoptosis in hemocytes or caspase-3 expression in gills, were measured at 0, 3, 24 and 48 h of hypoxia and hypoxia followed by 1 h of reoxygenation. The results showed that hemocytes HIF-1α expression was induced during hypoxia and reoxygenation at 3 h, while HIF-1ß decreased at 24 and 48 h. In normoxia, HIF-1 silencing in hemocytes increased apoptosis at 3 h and decreased at 48 h; while in gills, caspase-3 increased at 3, 24 and 48 h. In hypoxia, HIF-1 silencing decreased apoptosis in hemocytes at 3 h, but caspase-3 increased in gills. During reoxygenation, apoptosis in hemocytes and caspase-3 in gills increased. During normoxia in hemocytes, silencing of HIF-1 decreased MT expression, but in gills, MT increased. During hypoxia and reoxygenation, silencing induced MT in hemocytes and gills. These results indicate HIF-1 differential participation in MT expression regulation and apoptosis during different oxygen conditions.


Asunto(s)
Apoptosis , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Proteínas de Peces/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/metabolismo , Metalotioneína/metabolismo , Oxígeno/metabolismo , Penaeidae/metabolismo , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Proteínas de Peces/genética , Regulación de la Expresión Génica , Branquias/metabolismo , Branquias/patología , Hemocitos/metabolismo , Hemocitos/patología , Hipoxia/genética , Hipoxia/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Metalotioneína/genética , Penaeidae/genética , Especies Reactivas de Oxígeno/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-33130328

RESUMEN

Shrimp are increasingly exposed to warmer temperatures and lower oxygen concentrations in their habitat due to climate change. These conditions may lead to oxidative stress and apoptosis. We studied the effects of high temperature, hypoxia, reoxygenation, and the combination of these factors on lipid peroxidation, protein carbonylation, and caspase-3 activity in gills of white shrimp Litopenaeus vannamei. Silencing of mitochondrial manganese superoxide dismutase (mMnSOD) was used to determine the role of this enzyme in response to the abiotic stressors described above, to avoid oxidative damage and apoptosis. In addition, mMnSOD gene expression and mitochondrial SOD activity were evaluated to determine the efficiency of silencing this enzyme. The results showed that there was no effect of the abiotic stress conditions on the thiobarbituric acid reactive substances (TBARS), but protein carbonylation increased in all the oxidative stress treatments and caspase-3 activity decreased in hypoxia at 28 °C. On the other hand, mMnSOD-silenced shrimp experienced higher oxidative stress, since TBARS, carbonylated proteins and caspase-3 activity increased in some silenced treatments. Unexpectedly, mitochondrial SOD activity increased in some of the silenced treatments as well. Altogether, these results suggest that mMnSOD has a key role in shrimp for the prevention of oxidative damage development and induction of apoptosis in response to hypoxia, reoxygenation, high temperature, and their interactions, as conditions derived from climate change.


Asunto(s)
Caspasa 3/metabolismo , Crustáceos/fisiología , Técnicas de Silenciamiento del Gen , Calor , Hipoxia/metabolismo , Mitocondrias/enzimología , Estrés Oxidativo/genética , Oxígeno/metabolismo , Superóxido Dismutasa/genética , Animales , Crustáceos/metabolismo , Silenciador del Gen , Superóxido Dismutasa/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-33465469

RESUMEN

Low oxygen concentration in water (hypoxia) and high temperature are becoming more frequent due to climate change, forcing animals to endure stress or decease. Hypoxia and high temperature stress can lead to reactive oxygen species (ROS) accumulation and oxidative damage to the organisms. The shrimp Litopenaeus vannamei is the most cultivated crustacean worldwide. The aim of this study was to evaluate the expression and enzymatic activity of glutathione peroxidase (GPx), catalase (CAT) and cytosolic manganese superoxide dismutase (cMnSOD) in gills and hepatopancreas from L. vannamei in response to two combined stressors: hypoxia and reoxygenation at control and high temperature (28 vs 35 °C, respectively). In addition, glutathione and hydrogen peroxide content were analyzed. The changes were mainly tissue-specific. In gills, cMnSOD expression and enzymatic activity increased in response to the interactions between oxygen variation and thermal stress, while GPx and CAT were maintained. More changes occurred in GPx, CAT and MnSOD in hepatopancreas than in gills, mainly due to the effect of the individual stress factors of thermal stress or oxygen variations. On the other hand, the redox state of glutathione indicated that during high temperature, changes in the GSH/GSSG ratio occurred due to the fluctuations of GSSG. Hydrogen peroxide concentration was not affected by thermal stress or oxygen variations in hepatopancreas, whereas in gills, it was not detected. Altogether, these results indicate a complex pattern of antioxidant response to hypoxia, reoxygenation, high temperature and their combinations.


Asunto(s)
Antioxidantes/metabolismo , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Hipoxia/metabolismo , Oxígeno/metabolismo , Penaeidae/fisiología , Animales , Antioxidantes/química , Catalasa/metabolismo , Branquias/fisiología , Glutatión Peroxidasa/metabolismo , Hepatopáncreas/metabolismo , Homeostasis , Calor , Estrés Fisiológico , Superóxido Dismutasa/metabolismo , Temperatura
11.
Protein Expr Purif ; 166: 105511, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31622664

RESUMEN

Metallothioneins (MTs) are cysteine rich proteins with antioxidant capacity that participate in the homeostasis and detoxification of metals and other cellular processes, and help to counteract the oxidative stress produced by Reactive Oxygen Species (ROS). The production of ROS increases during several stress conditions, including metal intoxication and hypoxia (oxygen deficiency). During hypoxia the expression of the MT gene is induced in the shrimp Litopenaeus vannamei; however, the MT protein coded by this gene has not been purified nor characterized. In this work, the coding sequence of L. vannamei MT was cloned and overexpressed in Escherichia coli as a fusion protein, containing an intein and a chitin binding domain (CBD). The MT was purified by chitin affinity chromatography and its antioxidant capacity and ability to bind cadmium (Cd) and copper (Cu) were evaluated. This MT has an antioxidant capacity of 27.23 µM equivalent to Trolox in a 100 µg/mL solution. Addition of CdCl2 to the culture media augments 273-fold the Cd content, while addition of CuCl2 increases Cu content 569-fold in the purified MT. Thus, the shrimp MT gene codes for a functional protein that has antioxidant capacity and binds Cu and Cd.


Asunto(s)
Metalotioneína/química , Metalotioneína/genética , Penaeidae , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Animales , Cadmio/química , Quitina/química , Cromatografía de Afinidad , Clonación Molecular , Cobre/química , Escherichia coli , Vectores Genéticos , Penaeidae/enzimología , Penaeidae/genética
12.
J Therm Biol ; 88: 102519, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32125996

RESUMEN

Climate warming has been increasing ocean water temperature and decreasing oxygen concentrations, exposing aquatic organisms to environmental stress conditions. The shrimp Litopenaeus vannamei manages to survive these harsh environmental conditions by enhancing their antioxidant defenses, among other strategies. In this study, we report the mitochondrial manganese superoxide dismutase (mMnSOD) nucleotide and deduced amino acid sequences and its gene expression in L. vannamei tissues. The deduced protein has 220 amino acids with a signal peptide of 20 amino acids. Expression of mMnSOD was analyzed in hepatopancreas, gills and muscle, where gills had highest expression in normoxic conditions. In addition, shrimp were subjected to high temperature, hypoxia and reoxygenation to analyze the effect on the expression of mMnSOD and SOD activity in mitochondria. High temperature and hypoxia showed a synergistic effect in the up-regulation on expression of mMnSOD in gills and hepatopancreas. Moreover, induction in SOD activity was found in the mitochondrial fraction from gills of normoxia at high temperature, probably due to an overproduction of reactive oxygen species caused by an elevated metabolic rate due to the stress temperature. These results suggest that the combined stress conditions of hypoxia and high temperature trigger molecularly the antioxidant response in L. vannamei in a higher degree than only one stressor.


Asunto(s)
Proteínas de Artrópodos , Mitocondrias/metabolismo , Oxígeno , Penaeidae , Superóxido Dismutasa , Temperatura , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Secuencia de Bases , Penaeidae/genética , Penaeidae/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
13.
Protein Expr Purif ; 164: 105461, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31351993

RESUMEN

Lactate dehydrogenase (LDH) is a key enzyme to produce energy during hypoxia by anaerobic glycolysis. In the white shrimp Litopenaeus vannamei, two protein subunits (LDH-1 and LDH-2) were previously identified, deduced from two different transcripts that come from the same LDH gene by processing via mutually exclusive alternative splicing. LDH-1 contains exon five and LDH-2 contains exon six and the two proteins differ only in 15 amino acid residues. Both subunits were independently cloned and overexpressed in E. coli as a fusion protein containing a chitin binding domain. Previously, recombinant LDH-2 was successfully purified and characterized, but LDH-1 was insoluble and aggregated forming inclusion bodies. We report the production of soluble LDH-1 by testing different pHs in the buffers used to lyse the bacterial cells before the purification step and the characterization of the purified protein to show that the cDNA indeed codes for a functional and active protein. The recombinant native protein is a homotetramer of approximately 140 kDa composed by 36 kDa subunits and has higher affinity for pyruvate than for lactate. LDH-1 has an optimum pH of 7.5 and is stable between pH 8.0 and 9.0; pH data analysis showed two pKa values of 6.1 ±â€¯0.15 and 8.8 ±â€¯0.15 suggesting a histidine and asparagine, respectively, involved in the active site. The enzyme optimal temperature was 44 °C and it was stable between 20 and 60 °C. LDH-1 was slightly activated by NaCl, KCl and MgCl2 and fully inhibited by ZnCl2.


Asunto(s)
L-Lactato Deshidrogenasa/metabolismo , Penaeidae/enzimología , Animales , Clonación Molecular , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/aislamiento & purificación , Isoenzimas/metabolismo , L-Lactato Deshidrogenasa/química , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/aislamiento & purificación , Ácido Láctico/metabolismo , Penaeidae/química , Penaeidae/genética , Penaeidae/metabolismo , Multimerización de Proteína , Ácido Pirúvico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
14.
Fish Shellfish Immunol ; 93: 484-491, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31377432

RESUMEN

Hypoxia is a common stressor for aquaculture species. The Pacific white shrimp Litopenaeus vannamei survives low dissolved oxygen (DO) conditions by adjusting its energy metabolism. In vertebrates, the transcription factor p53 regulates glucose metabolism under stress through diverse target genes like the Tp53-induced glycolysis and apoptotic regulator (TIGAR), a protein similar to fructose-2,6-bisphosphatase that has a pro-survival role in cells participating in the defense against oxidative damage. Until now, TIGAR has been not reported in any invertebrate species, including crustaceans. In this work, we report the molecular cloning of the white shrimp TIGAR. The cDNA sequence is 765 bp encoding a 254 amino acid protein. Bioinformatics analyses predicted that although the overall sequence identities of L. vannamei TIGAR and vertebrate proteins are not very high (33.61%-35.34%), they have a remarkable predicted structural similarity with full conservation of catalytic residues, secondary and three-dimensional structures. Gene expression analysis by RT-qPCR revealed that the mRNA abundance of TIGAR in white shrimp is tissue-specific under normal oxygen conditions, with higher expression in gills than hepatopancreas and muscle. Also, gene expression in gills and hepatopancreas is modified by environmental hypoxia, suggesting that TIGAR participates in the cellular tolerance of L. vannamei to this stressor.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Penaeidae/genética , Penaeidae/inmunología , Secuencia de Aminoácidos , Anaerobiosis , Animales , Proteínas Reguladoras de la Apoptosis/química , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Secuencia de Bases , Clonación Molecular , Perfilación de la Expresión Génica , Filogenia , Alineación de Secuencia
15.
Artículo en Inglés | MEDLINE | ID: mdl-31100464

RESUMEN

Hypoxia is a frequent source of stress in the estuarine habitat of the white shrimp Litopenaeus vannamei. During hypoxia, L. vannamei gill cells rely more heavily on anaerobic glycolysis to obtain ATP. This is mediated by transcriptional up-regulation of glycolytic enzymes including glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The hypoxia inducible factor 1 (HIF-1) is an important transcriptional activator of several glycolytic enzymes during hypoxia in diverse animals, including crustaceans. In this work, we cloned and sequenced a fragment corresponding to the 5' flank of the GAPDH gene and identified a putative HIF-1 binding site, as well as sites for other transcription factors involved in the hypoxia signaling pathway. To investigate the role of HIF-1 in GAPDH regulation, we simultaneously injected double-stranded RNA (dsRNA) into shrimp to silence HIF-1α and HIF-1ß under normoxia, hypoxia, and hypoxia followed by reoxygenation, and then measured gill HIF-1α, HIF-1ß expression, GAPDH expression and activity, and glucose and lactate concentrations at 0, 3, 24 and 48 h. During normoxia, HIF-1 silencing induced up-regulation of GAPDH transcripts and activity, suggesting that expression is down-regulated via HIF-1 under these conditions. In contrast, HIF-1 silencing during hypoxia abolished the increases in GAPDH expression and activity, glucose and lactate concentrations. Finally, HIF-1 silencing during hypoxia-reoxygenation prevented the increase in GAPDH expression, however, those changes were not reflected in GAPDH activity and lactate accumulation. Altogether, these results indicate that GAPDH and glycolysis are transcriptionally regulated by HIF-1 in gills of white shrimp.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Factor 1 Inducible por Hipoxia/genética , Penaeidae/genética , Secuencia de Aminoácidos/genética , Animales , Regulación de la Expresión Génica , Branquias/metabolismo , Glucólisis/genética , Hipoxia/genética , Consumo de Oxígeno/genética , Penaeidae/fisiología
16.
Artículo en Inglés | MEDLINE | ID: mdl-30594527

RESUMEN

The cell cycle comprises a series of steps necessary for cell growth until cell division. The participation of proteins responsible for cell cycle regulation, known as cyclin dependent kinases or Cdks, is necessary for cycle progression. Cyclin dependent kinase 2 (Cdk-2) is one of the most studied Cdks. This kinase regulates the passage through the G1/S phase and is involved in DNA replication in the S phase. Cdks have been extensively studied in mammals, but there is little information about these proteins in crustaceans. In the present work, the nucleotide and amino acid sequence of Cdk-2 from the white shrimp (Cdk-2) and its expression during hypoxia and reoxygenation are reported. Cdk-2 is a highly conserved protein and contains the serine/threonine catalytic domain, an ATP binding site and the PSTAIRE sequence. The predicted Cdk-2 structure showed the two-lobed structure characteristic of kinases. Expression of Cdk-2 was detected in hepatopancreas, gills and muscle, with hepatopancreas having the highest expression during normoxic conditions. Cdk-2 expression was significantly induced after hypoxia for 24 h in muscle cells, but in hypoxia exposure for 24 followed by 1 h of reoxygenation, the expression levels returned to the levels found in normoxic conditions, suggesting induction of cell cycle progression in muscular cells during hypoxia. No significant changes in expression of Cdk-2 were detected in these conditions in hepatopancreas and gills.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Hipoxia/enzimología , Oxígeno/metabolismo , Penaeidae/enzimología , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Secuencia de Bases , Quinasa 2 Dependiente de la Ciclina/química , Quinasa 2 Dependiente de la Ciclina/genética , Branquias/enzimología , Hepatopáncreas/enzimología , Músculos/enzimología , Penaeidae/metabolismo , Filogenia
17.
Artículo en Inglés | MEDLINE | ID: mdl-30978470

RESUMEN

Freezing, dehydration, salinity variations, hypoxia or anoxia are some of the environmental constraints that many organisms must frequently endure. Organisms adapted to these stressors often reduce their metabolic rates to maximize their chances of survival. However, upon recovery of environmental conditions and basal metabolic rates, cells are affected by an oxidative burst that, if uncontrolled, leads to (oxidative) cell damage and eventually death. Thus, a number of adapted organisms are able to increase their antioxidant defenses during an environmental/functional hypoxic transgression; a strategy that was interpreted in the 1990s as a "preparation for oxidative stress" (POS). Since that time, POS mechanisms have been identified in at least 83 animal species representing different phyla including Cnidaria, Nematoda, Annelida, Tardigrada, Echinodermata, Arthropoda, Mollusca and Chordata. Coinciding with the 20th anniversary of the postulation of the POS hypothesis, we compiled this review where we analyze a selection of examples of species showing POS-mechanisms and review the most recent advances in understanding the underlying molecular mechanisms behind those strategies that allow animals to survive in harsh environments.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Molecular , Hipoxia , Estrés Oxidativo/fisiología , Animales , Anélidos/fisiología , Deshidratación/metabolismo , Congelación/efectos adversos , Moluscos/fisiología , Estrés Oxidativo/genética , Salinidad
18.
Protein Expr Purif ; 137: 20-25, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28625911

RESUMEN

Shrimp lactate dehydrogenase (LDH) is induced in response to environmental hypoxia. Two protein subunits deduced from different transcripts of the LDH gene from the shrimp Litopenaeus vannamei (LDHvan-1 and LDHvan-2) were identified. These subunits are expressed by alternative splicing. Since both subunits are expressed in most tissues, the purification of the enzyme from the shrimp will likely produce hetero LDH containing both subunits. Therefore, the aim of this study was to overexpress, purify and characterize only one subunit as a recombinant protein, the LDHvan-2. For this, the cDNA from muscle was cloned and overexpressed in E. coli as a fusion protein containing an intein and a chitin binding protein domain (CBD). The recombinant protein was purified by chitin affinity chromatography column that retained the CBD and released solely the full and active LDH. The active protein appears to be a tetramer with molecular mass of approximately 140 kDa and can use pyruvate or lactate as substrates, but has higher specific activity with pyruvate. The enzyme is stable between pH 7.0 to 8.5, and between 20 and 50 °C with an optimal temperature of 50 °C. Two pKa of 9.3 and 6.6, and activation energy of 44.8 kJ/mol°K were found. The kinetic constants Km for NADH was 23.4 ± 1.8 µM, and for pyruvate was 203 ± 25 µM, while Vmax was 7.45 µmol/min/mg protein. The shrimp LDH that is mainly expressed in shrimp muscle preferentially converts pyruvate to lactate and is an important enzyme for the response to hypoxia.


Asunto(s)
Proteínas de Artrópodos , Expresión Génica , L-Lactato Deshidrogenasa , Penaeidae/genética , Animales , Proteínas de Artrópodos/biosíntesis , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/metabolismo , L-Lactato Deshidrogenasa/biosíntesis , L-Lactato Deshidrogenasa/química , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/aislamiento & purificación , Penaeidae/enzimología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
19.
Artículo en Inglés | MEDLINE | ID: mdl-27112516

RESUMEN

In many organisms, episodes of low O2 concentration (hypoxia) and the subsequent rise of O2 concentration (reoxygenation) result in the accumulation of reactive oxygen species and oxidative stress. Selenoprotein M (SelM), is a selenocysteine containing protein with redox activity involved in the antioxidant response. It was previously shown that in the white shrimp Litopenaeus vannamei, the silencing of SelM by RNAi decreased peroxidase activity in gill. In this work, we report the structure of the SelM gene (LvSelM) and its relative expression in hepatopancreas and gill after 24h of hypoxia followed by 1h of reoxygenation. The gene is composed by four exons interrupted by tree introns. In gills and hepatopancreas, SelM expression increased after 24h of hypoxia followed by 1h of reoxygenation, while peroxidases activity diminished in hepatopancreas but increased in gills. Hydrogen peroxide (H2O2) concentration was higher in hepatopancreas in response to hypoxia for 6h and did not change after 24 of hypoxia followed by reoxygenation; conversely, no change was detected in gill. SelM appears to be a key enzyme in gill oxidative stress regulation, since the higher expression is associated with an increase in peroxidases activity while maintaining H2O2 concentration. In contrast, in hepatopancreas there is a higher expression after hypoxia and reoxygenation for 24h, but peroxidases activity was lower and the change in H2O2 occurred after 6h of hypoxia and this level was maintained during reoxygenation.


Asunto(s)
Branquias/metabolismo , Hepatopáncreas/metabolismo , Peróxido de Hidrógeno/metabolismo , Penaeidae/genética , Peroxidasas/metabolismo , Selenoproteínas/genética , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Secuencia de Bases , Expresión Génica , Hipoxia , Oxidación-Reducción , Estrés Oxidativo , Oxígeno/metabolismo , Penaeidae/metabolismo , Especies Reactivas de Oxígeno , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Artículo en Inglés | MEDLINE | ID: mdl-27032338

RESUMEN

HIF-1 is a transcription factor that controls a widespread range of genes in metazoan organisms in response to hypoxia and is composed of α and ß subunits. In shrimp, phosphofructokinase (PFK) and fructose bisphosphatase (FBP) are up-regulated in hypoxia. We hypothesized that HIF-1 is involved in the regulation of PFK and FBP genes in shrimp hepatopancreas under hypoxia. Long double stranded RNA (dsRNA) intramuscular injection was utilized to silence simultaneously both HIF-1 subunits, and then, we measured the relative expression of PFK and FBP, as well as their corresponding enzymatic activities in hypoxic shrimp hepatopancreas. The results indicated that HIF-1 participates in the up-regulation of PFK transcripts under short-term hypoxia since the induction caused by hypoxia (~1.6 and ~4.2-fold after 3 and 48h, respectively) is significantly reduced in the dsRNA animals treated. Moreover, PFK activity was significantly ~2.8-fold augmented after 3h in hypoxia alongside to an ~1.9-fold increment in lactate. However, when animals were dsRNA treated, both were significantly reduced. On the other hand, FBP transcripts were ~5.3-fold up-regulated in long-term hypoxic conditions (48h). HIF-1 is involved in this process since FBP transcripts were not induced by hypoxia when HIF-1 was silenced. Conversely, the FBP activity was not affected by hypoxia, which suggests its possible regulation at post-translational level. Taken together, these results position HIF-1 as a prime transcription factor in coordinating glucose metabolism through the PFK and FBP genes among others, in shrimp under low oxygen environments.


Asunto(s)
Fructosa-Bifosfatasa/metabolismo , Factor 1 Inducible por Hipoxia/metabolismo , Penaeidae/fisiología , Fosfofructoquinasas/metabolismo , Animales , Fructosa-Bifosfatasa/genética , Regulación Enzimológica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hepatopáncreas/metabolismo , Hipoxia , Factor 1 Inducible por Hipoxia/genética , Lactatos/metabolismo , Fosfofructoquinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA