Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell ; 160(4): 686-699, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25662009

RESUMEN

Chromothripsis is a catastrophic cellular event recently described in cancer in which chromosomes undergo massive deletion and rearrangement. Here, we report a case in which chromothripsis spontaneously cured a patient with WHIM syndrome, an autosomal dominant combined immunodeficiency disease caused by gain-of-function mutation of the chemokine receptor CXCR4. In this patient, deletion of the disease allele, CXCR4(R334X), as well as 163 other genes from one copy of chromosome 2 occurred in a hematopoietic stem cell (HSC) that repopulated the myeloid but not the lymphoid lineage. In competitive mouse bone marrow (BM) transplantation experiments, Cxcr4 haploinsufficiency was sufficient to confer a strong long-term engraftment advantage of donor BM over BM from either wild-type or WHIM syndrome model mice, suggesting a potential mechanism for the patient's cure. Our findings suggest that partial inactivation of CXCR4 may have general utility as a strategy to promote HSC engraftment in transplantation.


Asunto(s)
Inestabilidad Cromosómica , Síndromes de Inmunodeficiencia/genética , Verrugas/genética , Animales , Cromosomas Humanos , Modelos Animales de Enfermedad , Haploinsuficiencia , Células Madre Hematopoyéticas/metabolismo , Humanos , Linfocitos/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Mosaicismo , Mutación , Células Mieloides/metabolismo , Enfermedades de Inmunodeficiencia Primaria , Receptores CXCR4/genética , Remisión Espontánea
2.
Blood ; 142(1): 23-32, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-36928087

RESUMEN

WHIM syndrome is an autosomal dominant immunodeficiency disorder caused by gain-of-function mutations in chemokine receptor CXCR4 that promote severe panleukopenia because of retention of mature leukocytes in the bone marrow (BM). We previously reported that Cxcr4-haploinsufficient (Cxcr4+/o) hematopoietic stem cells (HSCs) have a strong selective advantage for durable hematopoietic reconstitution over wild-type (Cxcr4+/+) and WHIM (Cxcr4+/w) HSCs and that a patient with WHIM was spontaneously cured by chromothriptic deletion of the disease allele in an HSC, suggesting that WHIM allele inactivation through gene editing may be a safe genetic cure strategy for the disease. We have developed a 2-step preclinical protocol of autologous hematopoietic stem and progenitor cell (HSPC) transplantation to achieve this goal. First, 1 copy of Cxcr4 in HSPCs was inactivated in vitro by CRISPR/Cas9 editing with a single guide RNA (sgRNA) that does not discriminate between Cxcr4+/w and Cxcr4+/+ alleles. Then, through in vivo natural selection, WHIM allele-inactivated cells were enriched over wild-type allele-inactivated cells. The WHIM allele-inactivated HSCs retained long-term pluripotency and selective hematopoietic reconstitution advantages. To our knowledge, this is the first example of gene therapy for an autosomal dominant gain-of-function disease using a disease allele inactivation strategy in place of the less efficient disease allele repair approach.


Asunto(s)
Síndromes de Inmunodeficiencia , Verrugas , Ratones , Animales , Alelos , Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/terapia , Verrugas/genética , Verrugas/terapia , Terapia Genética , Receptores CXCR4/genética
4.
JCI Insight ; 4(24)2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31687976

RESUMEN

Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome immunodeficiency is caused by autosomal dominant gain-of-function mutations in chemokine receptor CXCR4. Patient WHIM-09 was spontaneously cured by chromothriptic deletion of 1 copy of 164 genes, including the CXCR4WHIM allele, presumably in a single hematopoietic stem cell (HSC) that repopulated HSCs and the myeloid lineage. Testing the specific contribution of CXCR4 hemizygosity to her cure, we previously demonstrated enhanced engraftment of Cxcr4+/o HSCs after transplantation in WHIM (Cxcr4+/w) model mice, but the potency was not quantitated. We now report graded-dose competitive transplantation experiments using lethally irradiated Cxcr4+/+ recipients in which mixed BM cells containing approximately 5 Cxcr4+/o HSCs and a 100-fold excess of Cxcr4+/w HSCs achieved durable 50% Cxcr4+/o myeloid and B cell chimerism in blood and approximately 20% Cxcr4+/o HSC chimerism in BM. In Cxcr4+/o/Cxcr4+/w parabiotic mice, we observed 80%-100% Cxcr4+/o myeloid and lymphoid chimerism in the blood and 15% Cxcr4+/o HSC chimerism in BM from the Cxcr4+/w parabiont, which was durable after separation from the Cxcr4+/o parabiont. Thus, CXCR4 haploinsufficiency likely significantly contributed to the selective repopulation of HSCs and the myeloid lineage from a single chromothriptic HSC in WHIM-09. Moreover, the results suggest that WHIM allele silencing of patient HSCs is a viable gene therapy strategy.


Asunto(s)
Haploinsuficiencia , Trasplante de Células Madre Hematopoyéticas , Leucopenia/terapia , Enfermedades de Inmunodeficiencia Primaria/terapia , Receptores CXCR4/genética , Verrugas/terapia , Animales , Cromotripsis , Modelos Animales de Enfermedad , Femenino , Mutación con Ganancia de Función , Terapia Genética/métodos , Humanos , Leucopenia/genética , Masculino , Ratones , Enfermedades de Inmunodeficiencia Primaria/complicaciones , Enfermedades de Inmunodeficiencia Primaria/genética , Quimera por Trasplante , Verrugas/complicaciones , Verrugas/genética
5.
J Clin Invest ; 128(8): 3312-3318, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29715199

RESUMEN

For gene therapy of gain-of-function autosomal dominant diseases, either correcting or deleting the disease allele is potentially curative. To test whether there may be an advantage of one approach over the other for WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome - a primary immunodeficiency disorder caused by gain-of-function autosomal dominant mutations in chemokine receptor CXCR4 - we performed competitive transplantation experiments using both lethally irradiated WT (Cxcr4+/+) and unconditioned WHIM (Cxcr4+/w) recipient mice. In both models, hematopoietic reconstitution was markedly superior using BM cells from donors hemizygous for Cxcr4 (Cxcr4+/o) compared with BM cells from Cxcr4+/+ donors. Remarkably, only approximately 6% Cxcr4+/o hematopoietic stem cell (HSC) chimerism after transplantation in unconditioned Cxcr4+/w recipient BM supported more than 70% long-term donor myeloid chimerism in blood and corrected myeloid cell deficiency in blood. Donor Cxcr4+/o HSCs differentiated normally and did not undergo exhaustion as late as 465 days after transplantation. Thus, disease allele deletion resulting in Cxcr4 haploinsufficiency was superior to disease allele repair in a mouse model of gene therapy for WHIM syndrome, allowing correction of leukopenia without recipient conditioning.


Asunto(s)
Trasplante de Médula Ósea , Haploinsuficiencia , Síndromes de Inmunodeficiencia , Leucopenia , Receptores CXCR4 , Quimera por Trasplante , Verrugas , Aloinjertos , Animales , Modelos Animales de Enfermedad , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/metabolismo , Síndromes de Inmunodeficiencia/patología , Síndromes de Inmunodeficiencia/terapia , Leucopenia/genética , Leucopenia/metabolismo , Leucopenia/patología , Leucopenia/terapia , Ratones , Ratones Mutantes , Enfermedades de Inmunodeficiencia Primaria , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Quimera por Trasplante/genética , Quimera por Trasplante/metabolismo , Verrugas/genética , Verrugas/metabolismo , Verrugas/patología , Verrugas/terapia
6.
Expert Opin Orphan Drugs ; 5(10): 813-825, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29057173

RESUMEN

21 INTRODUCTION: WHIM syndrome is a rare combined primary immunodeficiency disorder caused by autosomal dominant gain-of-function mutations in the chemokine receptor CXCR4. It is the only Mendelian condition known to be caused by mutation of a chemokine or chemokine receptor. As such, it provides a scientific opportunity to understand chemokine-dependent immunoregulation in humans and a medical opportunity to develop mechanism-based treatment and cure strategies. 22 AREAS COVERED: This review covers the clinical features, genetics, immunopathogenesis and clinical management of WHIM syndrome. Clinical trials of targeted therapeutic agents and potential cure strategies are also included. 23 EXPERT OPINION: WHIM syndrome may be particularly amenable to mechanism-based therapeutics for three reasons: 1) CXCR4 has been validated as the molecular target in the disease by Mendelian genetics; 2) the biochemical abnormality is excessive CXCR4 signaling; and 3) antagonists selective for CXCR4 have been developed. Plerixafor is FDA-approved for hematopoietic stem cell (HSC) mobilization and has shown preliminary safety and efficacy in phase I clinical trials in WHIM syndrome. Gene editing may represent a viable cure strategy, since chromothriptic deletion of the disease allele in HSCs resulted in clinical cure of a patient and because CXCR4 haploinsufficiency enhances engraftment of transplanted HSCs in mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA