Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Chem Sci ; 15(25): 9814-9822, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38939142

RESUMEN

Bis(trifluoromethane)sulfonimide lithium salt (Li-TFSI) is commonly used as an effective dopant to improve the performance of the hole-transporting material (HTM) in n-i-p perovskite solar cells (PSCs). However, the ultra-hygroscopic and migratory nature of Li-TFSI leads to inferior stability of PSCs. Here, we report on a strategy to regulate the anion unit in Li-TFSI from linear to cyclic, constructing a new dopant, lithium 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide (Li-CYCLIC), for the state-of-the-art poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA). Mechanistic and experimental results reveal that the cyclic anion CYCLIC- exhibits stronger interaction with Li+ and PTAA˙+ compared with the linear anion TFSI-, thus significantly restraining the moisture absorption and migration of Li+ and improving the thermodynamic stability of PTAA˙+CYCLIC-. With this molecular engineering, the resulting PSCs based on Li-CYCLIC obtained an improved efficiency, along with remarkably enhanced stability, retaining 96% of the initial efficiency after over 1150 hours under continuous 1 sun illumination in an N2 atmosphere, yielding an extrapolated T 80 of over 12 000 hours. In a broader context, the proposed strategy of linear-to-cyclic doping provides substantial guidance for the subsequent advancement in the development of effective dopants for photoelectric devices.

2.
Nat Commun ; 15(1): 2002, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443353

RESUMEN

The development of a robust quasi-ohmic contact with minimal resistance, good stability and cost-effectiveness is crucial for perovskite solar cells. We introduce a generic approach featuring a Lewis-acid layer sandwiched between dopant-free semicrystalline polymer and metal electrode in perovskite solar cells, resulting in an ideal quasi-ohmic contact even at elevated temperature up to 85 °C. The solubility of Lewis acid in alcohol facilitates nondestructive solution processing on top of polymer, which boosts hole injection from polymer into metal by two orders of magnitude. By integrating the polymer-acid-metal structure into solar cells, devices exhibit remarkable resilience, retaining 96% ± 3%, 96% ± 2% and 75% ± 7% of their initial efficiencies after continuous operation in nitrogen at 35 °C for 2212 h, 55 °C for 1650 h and 85 °C for 937 h, respectively. Leveraging the Arrhenius relation, we project an impressive T80 lifetime of 26,126 h at 30 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA