Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 957
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 56(12): 2773-2789.e8, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37992711

RESUMEN

Although the gut microbiota can influence central nervous system (CNS) autoimmune diseases, the contribution of the intestinal epithelium to CNS autoimmunity is less clear. Here, we showed that intestinal epithelial dopamine D2 receptors (IEC DRD2) promoted sex-specific disease progression in an animal model of multiple sclerosis. Female mice lacking Drd2 selectively in intestinal epithelial cells showed a blunted inflammatory response in the CNS and reduced disease progression. In contrast, overexpression or activation of IEC DRD2 by phenylethylamine administration exacerbated disease severity. This was accompanied by altered lysozyme expression and gut microbiota composition, including reduced abundance of Lactobacillus species. Furthermore, treatment with N2-acetyl-L-lysine, a metabolite derived from Lactobacillus, suppressed microglial activation and neurodegeneration. Taken together, our study indicates that IEC DRD2 hyperactivity impacts gut microbial abundances and increases susceptibility to CNS autoimmune diseases in a female-biased manner, opening up future avenues for sex-specific interventions of CNS autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Esclerosis Múltiple , Masculino , Femenino , Ratones , Animales , Esclerosis Múltiple/metabolismo , Modelos Animales de Enfermedad , Transducción de Señal , Progresión de la Enfermedad , Receptores Dopaminérgicos
2.
Nature ; 595(7867): 361-369, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34262215

RESUMEN

With the rapid growth and development of proton-exchange membrane fuel cell (PEMFC) technology, there has been increasing demand for clean and sustainable global energy applications. Of the many device-level and infrastructure challenges that need to be overcome before wide commercialization can be realized, one of the most critical ones is increasing the PEMFC power density, and ambitious goals have been proposed globally. For example, the short- and long-term power density goals of Japan's New Energy and Industrial Technology Development Organization are 6 kilowatts per litre by 2030 and 9 kilowatts per litre by 2040, respectively. To this end, here we propose technical development directions for next-generation high-power-density PEMFCs. We present the latest ideas for improvements in the membrane electrode assembly and its components with regard to water and thermal management and materials. These concepts are expected to be implemented in next-generation PEMFCs to achieve high power density.

3.
Proc Natl Acad Sci U S A ; 121(6): e2309466121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38300866

RESUMEN

Congenital anomalies of the lower genitourinary (LGU) tract are frequently comorbid due to genetically linked developmental pathways, and are among the most common yet most socially stigmatized congenital phenotypes. Genes involved in sexual differentiation are prime candidates for developmental anomalies of multiple LGU organs, but insufficient prospective screening tools have prevented the rapid identification of causative genes. Androgen signaling is among the most influential modulators of LGU development. The present study uses SpDamID technology in vivo to generate a comprehensive map of the pathways actively regulated by the androgen receptor (AR) in the genitalia in the presence of the p300 coactivator, identifying wingless/integrated (WNT) signaling as a highly enriched AR-regulated pathway in the genitalia. Transcription factor (TF) hits were then assayed for sexually dimorphic expression at two critical time points and also cross-referenced to a database of clinically relevant copy number variations to identify 252 TFs exhibiting copy variation in patients with LGU phenotypes. A subset of 54 TFs was identified for which LGU phenotypes are statistically overrepresented as a proportion of total observed phenotypes. The 252 TF hitlist was then subjected to a functional screen to identify hits whose silencing affects genital mesenchymal growth rates. Overlap of these datasets results in a refined list of 133 TFs of both functional and clinical relevance to LGU development, 31 of which are top priority candidates, including the well-documented renal progenitor regulator, Sall1. Loss of Sall1 was examined in vivo and confirmed to be a powerful regulator of LGU development.


Asunto(s)
Variaciones en el Número de Copia de ADN , Sistema Urinario , Humanos , Estudios Prospectivos , Andrógenos/metabolismo , Genitales/metabolismo , Sistema Urinario/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(8): e2210643120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36795751

RESUMEN

Microglia play a critical role in the pathogenic process of neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD). Upon pathological stimulation, microglia are converted from a surveillant to an overactivated phenotype. However, the molecular characters of proliferating microglia and their contributions to the pathogenesis of neurodegeneration remain unclear. Here, we identify chondroitin sulfate proteoglycan 4 (Cspg4, also known as neural/glial antigen 2)-expressing microglia as a specific subset of microglia with proliferative capability during neurodegeneration. We found that the percentage of Cspg4+ microglia was increased in mouse models of PD. The transcriptomic analysis of Cspg4+ microglia revealed that the subcluster Cspg4high microglia displayed a unique transcriptomic signature, which was characterized by the enrichment of orthologous cell cycle genes and a lower expression of genes responsible for neuroinflammation and phagocytosis. Their gene signatures were also distinct from that of known disease-associated microglia. The proliferation of quiescent Cspg4high microglia was evoked by pathological α-synuclein. Following the transplantation in the adult brain with the depletion of endogenous microglia, Cspg4high microglia grafts showed higher survival rates than their Cspg4- counterparts. Consistently, Cspg4high microglia were detected in the brain of AD patients and displayed the expansion in animal models of AD. These findings suggest that Cspg4high microglia are one of the origins of microgliosis during neurodegeneration and may open up a avenue for the treatment of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Ratones , Animales , Microglía/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Fagocitosis
5.
FASEB J ; 38(1): e23397, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38149908

RESUMEN

Toxoplasma gondii relies heavily on the de novo pyrimidine biosynthesis pathway for fueling the high uridine-5'-monophosphate (UMP) demand during parasite growth. The third step of de novo pyrimidine biosynthesis is catalyzed by dihydroorotase (DHO), a metalloenzyme that catalyzes the reversible condensation of carbamoyl aspartate to dihydroorotate. Here, functional analyses of TgDHO reveal that tachyzoites lacking DHO are impaired in overall growth due to decreased levels of UMP, and the noticeably growth restriction could be partially rescued after supplementation with uracil or high concentrations of L-dihydroorotate in vitro. When pyrimidine salvage pathway is disrupted, both DHOH35A and DHOD284E mutant strains proliferated much slower than DHO-expressing parasites, suggesting an essential role of both TgDHO His35 and Asp284 residues in parasite growth. Additionally, DHO deletion causes the limitation of bradyzoite growth under the condition of uracil supplementation or uracil deprivation. During the infection in mice, the DHO-deficient parasites are avirulent, despite the generation of smaller tissue cysts. The results reveal that TgDHO contributes to parasite growth both in vitro and in vivo. The significantly differences between TgDHO and mammalian DHO reflect that DHO can be exploited to produce specific inhibitors targeting apicomplexan parasites. Moreover, potential DHO inhibitors exert beneficial effects on enzymatic activity of TgDHO and T. gondii growth in vitro. In conclusion, these data highlight the important role of TgDHO in parasite growth and reveal that it is a promising anti-parasitic target for future control of toxoplasmosis.


Asunto(s)
Parásitos , Toxoplasma , Animales , Ratones , Dihidroorotasa , Pirimidinas/farmacología , Uracilo , Uridina Monofosfato , Mamíferos
6.
Gut ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378250

RESUMEN

OBJECTIVES: To evaluate the association between healthy lifestyle behaviours and the incidence of irritable bowel syndrome (IBS). DESIGN: Population-based prospective cohort study. SETTING: The UK Biobank. PARTICIPANTS: 64 268 adults aged 37 to 73 years who had no IBS diagnosis at baseline were enrolled between 2006 and 2010 and followed up to 2022. MAIN EXPOSURE: The five healthy lifestyle behaviours studied were never smoking, optimal sleep, high level of vigorous physical activity, high dietary quality and moderate alcohol intake. MAIN OUTCOME MEASURE: The incidence of IBS. RESULTS: During a mean follow-up of 12.6 years, 961 (1.5%) incident IBS cases were recorded. Among the 64 268 participants (mean age 55.9 years, 35 342 (55.0%) female, 7604 (11.8%) reported none of the five healthy lifestyle behaviours, 20 662 (32.1%) reported 1 behaviour, 21 901 (34.1%) reported 2 behaviours and 14 101 (21.9%) reported 3 to 5 behaviours at baseline. The multivariable adjusted hazard ratios associated with having 1, 2 and 3 to 5 behaviours for IBS incidence were 0.79 (95% confidence intervals 0.65 to 0.96), 0.64 (0.53 to 0.78) and 0.58 (0.46 to 0.72), respectively (P for trend <0.001). Never smoking (0.86, 0.76 to 0.98, P=0.02), high level of vigorous physical activity (0.83, 0.73 to 0.95, P=0.006) and optimal sleep (0.73, 0.60 to 0.88, P=0.001) demonstrated significant independent inverse associations with IBS incidence. No significant interactions were observed between these associations and age, sex, employment status, geographic location, gastrointestinal infection, endometriosis, family history of IBS or lifestyle behaviours. CONCLUSIONS: Adhering to a higher number of healthy lifestyle behaviours is significantly associated with a lower incidence of IBS in the general population. Our findings suggest the potential of lifestyle modifications as a primary prevention strategy for IBS.

7.
Hum Mol Genet ; 31(24): 4217-4227, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-35899771

RESUMEN

Ets1 deletion in some mouse strains causes septal defects and has been implicated in human congenital heart defects in Jacobsen syndrome, in which one copy of the Ets1 gene is missing. Here, we demonstrate that loss of Ets1 in mice results in a decrease in neural crest (NC) cells migrating into the proximal outflow tract cushions during early heart development, with subsequent malalignment of the cushions relative to the muscular ventricular septum, resembling double outlet right ventricle (DORV) defects in humans. Consistent with this, we find that cultured cardiac NC cells from Ets1 mutant mice or derived from iPS cells from Jacobsen patients exhibit decreased migration speed and impaired cell-to-cell interactions. Together, our studies demonstrate a critical role for ETS1 for cell migration in cardiac NC cells that are required for proper formation of the proximal outflow tracts. These data provide further insights into the molecular and cellular basis for development of the outflow tracts, and how perturbation of NC cells can lead to DORV.


Asunto(s)
Cardiopatías Congénitas , Cresta Neural , Proteína Proto-Oncogénica c-ets-1 , Animales , Humanos , Ratones , Movimiento Celular/genética , Corazón , Organogénesis , Proteína Proto-Oncogénica c-ets-1/genética
8.
Small ; 20(24): e2310737, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38396324

RESUMEN

Using powder-based ink appears to be the most suitable candidate for commercializing the membrane electrode assembly (MEA), while research on the powder-based NPM catalyst for anion exchange membrane water electrolyzer (AEMWE) is currently insufficient, especially at high current density. Herein, a sulfur source (NiFe Layered double hydroxide adsorbed SO 4 2 - ${\mathrm{SO}}_4^{2 - }$ ) confinement strategy is developed to integrate Ni3S2 onto the surface of amorphous/crystalline NiFe alloy nanoparticles (denoted NiFe/Ni-S), achieving advanced control over the sulfidation process for the formation of metal sulfides. The constructed interface under the sulfur source confinement strategy generates abundant active sites that increase electron transport at the electrode-electrolyte interface and improve ability over an extended period at a high current density. Consequently, the constructed NiFe/Ni-S delivers an ultra-low overpotential of 239 mV at 10 mA cm-2 and 0.66 mA cm ECSA - 2 ${\mathrm{cm}}_{{\mathrm{ECSA}}}^{ - 2}$ under an overpotential of 300 mV. The AEMWE with NiFe/Ni-S anode exhibits a cell voltage of 1.664 V @ 0.5 A cm-2 and a 400 h stability at 1.0 A cm-2.

9.
Respir Res ; 25(1): 66, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317159

RESUMEN

BACKGROUND: Small airway remodelling is a vital characteristic of chronic obstructive pulmonary disease (COPD), which is mainly caused by epithelial barrier dysfunction and epithelial-mesenchymal transition (EMT). Recent studies have indicated that histone deacetylase 6 (HDAC6) plays an important role in the dysregulation of epithelial function. In this study, we investigated the therapeutic effects and underlying mechanisms of an inhibitor with high selectivity for HDAC6 in COPD. METHODS: Cigarette smoke (CS) exposure was used to establish a CS-induced COPD mouse model. CAY10603 at doses of 2.5 and 10 mg/kg was injected intraperitoneally on alternate days. The protective effects of CAY10603 against CS-induced emphysema, epithelial barrier function and small airway remodeling were evaluated using hematoxylin and eosin (H&E) staining, Masson's trichrome staining, immunohistochemical staining, and western blot. The human lung bronchial epithelial cell line (HBE) was used to elucidate the underlying molecular mechanism of action of CAY10603. RESULTS: HDAC6 levels in the lung homogenates of CS-exposed mice were higher than that those in control mice. Compared to the CS group, the mean linear intercept (MLI) of the CAY10603 treatment group decreased and the mean alveolar number (MAN)increased. Collagen deposition was reduced in groups treated with CAY10603. The expression of α-SMA was markedly upregulated in the CS group, which was reversed by CAY10603 treatment. Conversely, E-cadherin expression in the CS group was further downregulated, which was reversed by CAY10603 treatment. CAY10603 affects the tight junction protein expression of ZO-1 and occludin. ZO-1 and occludin expression were markedly downregulated in the CS group. After CAY10603treatment, the protein expression level of ZO-1 and occludin increased significantly. In HBE cells, Cigarette smoke extract (CSE) increased HDAC6 levels. CAY10603 significantly attenuated the release of TGF-ß1 induced by CSE. CAY10603 significantly increased the E-cadherin levels in TGF-ß1 treated HBE cells, while concurrently attenuated α-SMA expression. This effect was achieved through the suppression of Smad2 and Smad3 phosphorylation. CAY10603 also inhibited TGF-ß1 induced cell migration. CONCLUSIONS: These findings suggested that CAY10603 inhibited CS induced small airway remodelling by regulating epithelial barrier dysfunction and reversing EMT via the TGF-ß1/Smad2/3 signalling pathway.


Asunto(s)
Carbamatos , Fumar Cigarrillos , Oxazoles , Enfermedad Pulmonar Obstructiva Crónica , Animales , Humanos , Ratones , Remodelación de las Vías Aéreas (Respiratorias) , Cadherinas/metabolismo , Fumar Cigarrillos/efectos adversos , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Histona Desacetilasa 6/metabolismo , Ocludina , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Productos de Tabaco , Factor de Crecimiento Transformador beta1/metabolismo
10.
BMC Cancer ; 24(1): 153, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291354

RESUMEN

BACKGROUND: Neoadjuvant immune checkpoint inhibitors(ICIs) combined with chemotherapy can improve non-small cell lung cancer(NSCLC) patients' pathological responses and show promising improvements in survival. Chronic obstructive pulmonary disease (COPD) is a systemic inflammatory disease, and its associated abnormal inflammatory response affects not only the immunotherapy efficacy but also immune-related adverse events. It remains unclear whether NSCLC patients with COPD can benefit from neoadjuvant ICIs combined with chemotherapy. METHODS: A retrospective observational clinical study was conducted on 105 consecutive NSCLC patients receiving neoadjuvant ICIs combined with chemotherapy at the Department of Thoracic Surgery of Tianjin Chest Hospital between April 2020 and April 2023. RESULTS: A total of 74 NSCLC patients were included in the study, including 30 patients with COPD and 44 patients without COPD. The percentage of patients with a pathological complete response (PCR) was higher in the COPD group than in the non-COPD group (43.3% vs. 20.5%, P = 0.042). Multivariate logistic regression analysis of factors associated with PCR showed that the adjusted odds ratio (OR) was statistically significant for presence of COPD (OR = 3.020, 95%CI: 1.042-8.757; P = 0.042). Major pathological response (66.7% vs. 50%, P = 0.155), R0 resection rate (96.7% vs.93.2%, P = 0.642), N2 lymph node downstaging(92.3% vs. 66.7%, P = 0.182) and objective response rate (70% vs. 63.6%, P = 0.57) were not significantly different between the groups. Progression-free survival(PFS) was not reached in the COPD group and 17 months (95%CI: 12.1-21.9) in the non-COPD group, with statistically significance (χ2 = 6.247, P = 0.012). Multivariate Cox's regression analysis showed that the adjusted hazard ratio (HRadj) was statistically significant for presence of COPD (HRadj = 0.321, 95%CI: 0.111-0.930; P = 0.036). The grade 3 and grade 4 adverse events in the COPD group were leukopenia (3.3%, 6.7%), neutropenia (3.3%, 6.7%), fatigue (6.7%, 0%), gastrointestinal reactions (3.3%, 0%), and hypothyroidism (3.3%, 0%). In the non-COPD group, the corresponding adverse events were leukopenia (6.8%, 6.8%), neutropenia (3.3%, 6.8%), fatigue (2.3%, 0%), gastrointestinal reactions (2.3%, 0%), and hypothyroidism (2.3%, 0%), respectively. CONCLUSIONS: The present study indicates that the presence of COPD may improve PCR, prolong PFS, and have an acceptable safety profile in NSCLC patients receiving neoadjuvant ICIs combined with chemotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Hipotiroidismo , Neoplasias Pulmonares , Neutropenia , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Neoplasias Pulmonares/tratamiento farmacológico , Terapia Neoadyuvante , Estudios Retrospectivos , Fatiga , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico
11.
J Nat Prod ; 87(2): 176-185, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38277488

RESUMEN

Celastrol is a bioactive pentacyclic triterpenoid with promising therapeutic effects that is mainly distributed in Celastraceae plants. Although some enzymes involved in the celastrol biosynthesis pathway have been reported, many biosynthetic steps remain unknown. Herein, transcriptomics and metabolic profiles of multiple species in Celastraceae were integrated to screen for cytochrome P450s (CYPs) that are closely related to celastrol biosynthesis. The CYP716 enzyme, TwCYP716C52, was found to be able to oxidize the C-2 position of polpunonic acid, a precursor of celastrol, to form the wilforic acid C. RNAi-mediated repression of TwCYP716C52 in Tripterygium wilfordii suspension cells further confirmed its involvement in celastrol biosynthesis. The C-2 catalytic mechanisms of TwCYP716C52 were further explored by using molecular docking and site-directed mutagenesis experiments. Moreover, a modular optimization strategy was used to construct an engineered yeast to produce wilforic acid C at a titer of 5.8 mg·L-1. This study elucidates the celastrol biosynthetic pathway and provides important functional genes and sufficient precursors for further enzyme discovery.


Asunto(s)
Saccharomyces cerevisiae , Triterpenos , Saccharomyces cerevisiae/metabolismo , Simulación del Acoplamiento Molecular , Triterpenos Pentacíclicos , Triterpenos/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Tripterygium/genética
12.
Acta Pharmacol Sin ; 45(1): 23-35, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37644131

RESUMEN

Heart failure (HF) with preserved ejection fraction (HFpEF) is currently a preeminent challenge for cardiovascular medicine. It has a poor prognosis, increasing mortality, and is escalating in prevalence worldwide. Despite accounting for over 50% of all HF patients, the mechanistic underpinnings driving HFpEF are poorly understood, thus impeding the discovery and development of mechanism-based therapies. HFpEF is a disease syndrome driven by diverse comorbidities, including hypertension, diabetes and obesity, pulmonary hypertension, aging, and atrial fibrillation. There is a lack of high-fidelity animal models that faithfully recapitulate the HFpEF phenotype, owing primarily to the disease heterogeneity, which has hampered our understanding of the complex pathophysiology of HFpEF. This review provides an updated overview of the currently available animal models of HFpEF and discusses their characteristics from the perspective of energy metabolism. Interventional strategies for efficiently utilizing energy substrates in preclinical HFpEF models are also discussed.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Animales , Humanos , Volumen Sistólico/fisiología , Comorbilidad , Descubrimiento de Drogas
13.
Acta Pharmacol Sin ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987389

RESUMEN

Influenza A virus (IAV) is a widespread pathogen that poses a significant threat to human health, causing pandemics with high mortality and pathogenicity. Given the emergence of increasingly drug-resistant strains of IAV, currently available antiviral drugs have been reported to be inadequate to meet clinical demands. Therefore, continuous exploration of safe, effective and broad-spectrum antiviral medications is urgently required. Here, we found that the small molecule compound J1 exhibited low toxicity both in vitro and in vivo. Moreover, J1 exhibits broad-spectrum antiviral activity against enveloped viruses, including IAV, respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human coronavirus OC43 (HCoV-OC43), herpes simplex virus type 1 (HSV-1) and HSV-2. In this study, we explored the inhibitory effects and mechanism of action of J1 on IAV in vivo and in vitro. The results showed that J1 inhibited infection by IAV strains, including H1N1, H7N9, H5N1 and H3N2, as well as by oseltamivir-resistant strains. Mechanistic studies have shown that J1 blocks IAV infection mainly through specific interactions with the influenza virus hemagglutinin HA2 subunit, thereby blocking membrane fusion. BALB/c mice were used to establish a model of acute lung injury (ALI) induced by IAV. Treatment with J1 increased survival rates and reduced viral titers, lung index and lung inflammatory damage in virus-infected mice. In conclusion, J1 possesses significant anti-IAV effects in vitro and in vivo, providing insights into the development of broad-spectrum antivirals against future pandemics.

14.
BMC Pulm Med ; 24(1): 77, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336639

RESUMEN

OBJECTIVE: This study aimed to investigate the risk factors for peripheral arteriosclerosis (PAS) and peripheral artery disease (PAD) in chronic obstructive pulmonary disease (COPD) patients and potential ultrasound indicators that could be used to improve detection. METHOD: Outpatients seeking care between January 1, 2017, and December 31, 2020, in The First Affiliated Hospital of China Medical University were prospectively recruited. Subjects were divided into COPD and non-COPD (control) groups, and the COPD group was further divided into PAD and non-PAD subgroup, at the same time, PAS and non-PAS subgroup. Indicators of PAD -ankle-brachial index (ABI), indicators of PAS- pulse wave velocity (PWV), and ultrasound indices -peak systolic blood flow velocity (PSV) and blood flow acceleration velocity (AccV) were compared. RESULT: Sixty-nine (61.6%) of 112 enrolled subjects had COPD. COPD patients had higher age, and blood pressure (BP)lower than controls. Seventeen (24.6%) COPD patients had PAD, the prevalence of PAD increases with the decrease of lung function, and seven (16.3%) non-COPD patients had PAD, however, there was no significant statistical difference between COPD and non-COPD groups. Fifty (72.5%) COPD patients had PAS, and thirty-four (79.1%) non-COPD patients had PAS, however, there was also no significant difference. The PAS subgroup had higher age, body mass index(BMI), body fat percentage(BFP), lower FEV1 and FEV1/FVC, as well as higher levels of right brachial artery and left dorsalis pedis artery AccV. Factors that correlated with ABI were 6MWD, post-bronchodilator FEV1, FEV1/ FVC, and maximal middle expiratory flow between 75% and 25% of FVC. Age, BP, and 6MWD, but not pulmonary function, were associated with brachial-ankle PWV (baPWV). There was a positive correlation between baPWV and radial artery AccV bilaterally. CONCLUSION: Radial artery AccV correlated well with baPWV, which suggests that ultrasound could be used to assess both morphological and functional changes in vessels, may serving as a better method to identify PAS in high-risk COPD patients.


Asunto(s)
Enfermedad Arterial Periférica , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Análisis de la Onda del Pulso , Ultrasonido , Arteria Braquial/diagnóstico por imagen , Enfermedad Arterial Periférica/epidemiología
15.
J Ultrasound Med ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39032000

RESUMEN

OBJECTIVE: We aimed to analyze the effect of high-intensity focused ultrasound (HIFU) on different types of adenomyosis (AM) based on magnetic resonance imaging (MRI) classification. METHODS: A total of 206 AM patients who underwent HIFU between January 2017 and December 2021 were included in this retrospective study. The size and location of AM were evaluated based on T2-weighted imaging (T2WI) of MRI. Patients were divided into internal (subtype I), external (subtype II), intramural (subtype III), and full-thickness (subtype IV) AM groups. All patients underwent an MRI examination before and one day after HIFU. After ultrasound-guided HIFU ablation, the parameters of ultrasonic energy input during HIFU treatment among different groups were recorded and compared. The adverse reactions and complications among different groups were compared. RESULTS: The lesion volume in the subtype IV group was significantly larger than the subtype II and III groups (P < .05). The HIFU irradiation time, treatment time, and total energy input in the subtype IV group were significantly higher than the subtype I and III groups (P < .05). The number of cases of abdominal pain and vaginal fluid in the treatment area in the subtype IV group was significantly higher than in the subtype II group. CONCLUSION: Although HIFU has different treatment strategies and parameters for different subtypes of AM, it can achieve a satisfactory ablation rate, which is safe and effective.

16.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(1): 32-37, 2024 Jan 10.
Artículo en Zh | MEDLINE | ID: mdl-38171556

RESUMEN

OBJECTIVE: To study the trinucleotide repeats of GCN (GCA, GCT, GCC, GCG) encoding Alanine in exon 3 of the PHOX2B gene among healthy individuals from southwest China and two patients with Congenital central hypoventilation syndrome (CCHS). METHODS: The number and sequence of the GCN repeats of the PHOX2B gene were analyzed by capillary electrophoresis, Sanger sequencing and cloning sequencing of 518 healthy individuals and two newborns with CCHS, respectively. RESULTS: Among the 1036 alleles of the 518 healthy individuals, five alleles were identified, including (GCN)7, (GCN)13, (GCN)14, (GCN)15 and (GCN)20. The frequency of the (GCN)20 allele was the highest (94.79%). And five genotypes were identified, which included (GCN)7/(GCN)20, (GCN)13/(GCN)20, (GCN)14/(GCN)20, (GCN)15/(GCN)20, (GCN)20/(GCN)20. The homozygous genotypes were all (GCN)20/(GCN)20, and the carrier rate was 89.58%. Four GCN sequences of the (GCN)20 homozygous genotypes were identified among the 464 healthy individuals. The GCN repeat numbers in the exon 3 of the PHOX2B gene showed no significant difference between the expected and observed values, and had fulfilled the,Hardy-Weinberg equilibrium. The genotypes of the two CCHS patients were (GCN)20/(GCN)25 and (GCN)20/(GCN)30, respectively. CONCLUSION: It is important to determine the GCN repeats and genotypic data of the exon 3 of the PHOX2B gene among the healthy individuals. The number of GCN repeats in 518 healthy individuals was all below 20. The selection of appropriate methods can accurately detect the polyalanine repeat mutations (PARMs) of the PHOX2B gene, which is conducive to the early diagnosis, intervention and treatment of CCHS.


Asunto(s)
Apnea Central del Sueño , Factores de Transcripción , Humanos , Recién Nacido , Proteínas de Homeodominio/genética , Hipoventilación/diagnóstico , Hipoventilación/genética , Hipoventilación/congénito , Mutación , Apnea Central del Sueño/diagnóstico , Apnea Central del Sueño/genética , Factores de Transcripción/genética
17.
Zhongguo Zhong Yao Za Zhi ; 49(4): 884-893, 2024 Feb.
Artículo en Zh | MEDLINE | ID: mdl-38621895

RESUMEN

Sepsis is a systemic inflammatory response syndrome caused by infection, with high morbidity and mortality. Sepsis-induced liver injury(SILI) is one of the manifestations of sepsis-induced multiple organ syndrome. At present, there is no recommended pharmacological intervention for the treatment of SILI. traditional Chinese medicine(TCM), based on the holism and dialectical treatment concept, shows the therapeutic characteristics of multi-target and multi-pathway and can comprehensively prevent and treat SILI by interfering with inflammatory factors, inflammatory signaling pathways, and anti-oxidative stress and inhibiting apoptosis. This article reviewed the experimental studies on the treatment of SILI with TCM to clarify its pathogenic mechanism and therapeutic characteristics, so as to provide more ideas and directions for the development or preparation of new drugs.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Medicamentos Herbarios Chinos , Sepsis , Humanos , Medicina Tradicional China , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/tratamiento farmacológico , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Apoptosis , Transducción de Señal , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología
18.
BMC Plant Biol ; 23(1): 113, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823576

RESUMEN

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a serious fungal disease that critically threatens the yield and quality of wheat. Utilization of host resistance is the most effective and economical method to control this disease. In our study, a wheat breeding line ShiCG15-009, released from Hebei Province, was highly resistant to powdery mildew at all stages. To dissect its genetic basis, ShiCG15-009 was crossed with the susceptible cultivar Yannong 21 to produce F1, F2 and F2:3 progenies. After genetic analysis, a single dominant gene, tentatively designated PmCG15-009, was proved to confer resistance to Bgt isolate E09. Further molecular markers analysis showed that PmCG15-009 was located on chromosome 2BL and flanked by markers XCINAU130 and XCINAU143 with the genetic distances 0.2 and 0.4 cM, respectively, corresponding to a physic interval of 705.14-723.48 Mb referred to the Chinese Spring reference genome sequence v2.1. PmCG15-009 was most likely a new gene differed from the documented Pm genes on chromosome 2BL since its different origin, genetic diversity, and physical position. To analyze and identify the candidate genes, six genes associated with disease resistance in the candidate interval were confirmed to be associated with PmCG15-009 via qRT-PCR analysis using the parents ShiCG15-009 and Yannong 21 and time-course analysis post-inoculation with Bgt isolate E09. To accelerate the transfer of PmCG15-009 using marker-assisted selection (MAS), 18 closely or co-segregated markers were evaluated and confirmed to be suitable for tracing PmCG15-009, when it was transferred into different wheat cultivars.


Asunto(s)
Fitomejoramiento , Triticum , Triticum/genética , Triticum/microbiología , Mapeo Cromosómico/métodos , Marcadores Genéticos , Genes de Plantas/genética , Resistencia a la Enfermedad/genética , Erysiphe , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
19.
J Neuroinflammation ; 20(1): 203, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37674228

RESUMEN

Astrocytes contribute to chronic neuroinflammation in a variety of neurodegenerative diseases, including Parkinson's disease (PD), the most common movement disorder. However, the precise role of astrocytes in neuroinflammation remains incompletely understood. Herein, we show that regulator of G-protein signaling 5 (RGS5) promotes neurodegenerative process through augmenting astrocytic tumor necrosis factor receptor (TNFR) signaling. We found that selective ablation of Rgs5 in astrocytes caused an inhibition in the production of cytokines resulting in mitigated neuroinflammatory response and neuronal survival in animal models of PD, whereas overexpression of Rgs5 had the opposite effects. Mechanistically, RGS5 switched astrocytes from neuroprotective to pro-inflammatory property via binding to the receptor TNFR2. RGS5 also augmented TNFR signaling-mediated pro-inflammatory response by interacting with the receptor TNFR1. Moreover, interrupting RGS5/TNFR interaction by either RGS5 aa 1-108 or small molecular compounds feshurin and butein, suppressed astrocytic cytokine production. We showed that the transcription of astrocytic RGS5 was controlled by transcription factor early B cell factor 1 whose expression was reciprocally influenced by RGS5-modulated TNF signaling. Thus, our study indicates that beyond its traditional role in G-protein coupled receptor signaling, astrocytic RGS5 is a key modulator of TNF signaling circuit with resultant activation of astrocytes thereby contributing to chronic neuroinflammation. Blockade of the astrocytic RGS5/TNFR interaction is a potential therapeutic strategy for neuroinflammation-associated neurodegenerative diseases.


Asunto(s)
Enfermedades Neuroinflamatorias , Proteínas RGS , Animales , Astrocitos , Transducción de Señal , Proteínas RGS/genética , Inflamación
20.
Small ; 19(43): e2302090, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37376859

RESUMEN

Due to the sluggish kinetics of the oxygen reduction reaction (ORR) by non-Pt based catalyst, high loading of catalyst is required to achieve satisfactory fuel cell performance, which inevitably leads to the increase of the catalyst layer thickness with serious mass transport resistance. Herein, a defective zeolitic imidazolate framework (ZIF) derived Co/Fe-N-C catalyst with small mesopores (2-4 nm) and high density of CoFe atomic active sites are prepared by regulating the Fe dosage and pyrolysis temperature. Molecular dynamics simulation and electrochemical tests indicate that > 2 nm mesopores show insignificant influence on the diffusion process of O2 and H2 O molecules, leading to the high utilization of active sites and low mass transport resistance. The proton exchange membrane fuel cell (PEMFC) shows a high-power density of 755 mW cm-2 with only 1.5 mg cm-2 of non-Pt catalyst in the cathode. No apparent performance loss caused by concentration difference can be observed, in particular in the high current density region (1 A cm-2 ). This work emphasizes the importance of small mesopore design in the Co/Fe-N-C catalyst, which is anticipated to provide essential guidance for the application of non-Pt catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA