Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 577
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Hepatology ; 79(2): 438-450, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37607727

RESUMEN

BACKGROUND AND AIMS: To evaluate the diagnostic performance of dual elastography (dual-elasto) in continuous differentiation of liver fibrosis and inflammation in a large prospective cohort of patients with chronic HBV. APPROACH AND RESULTS: Adults with positive HBsAg for at least 6 months were recruited from 12 medical centers. Participants underwent dual-elasto evaluations. Biopsy was performed 3 days after dual-elasto examination. Four logistic regression models were trained and strung together into series models. Decision trees based on the series models were performed to achieve continuous differentiation of liver fibrosis and inflammation. The influence of inflammation on the fibrosis stage was also evaluated. A total of 560 patients were included in the training set and 240 in the validation set. Areas under the receiver operating characteristic curve of the series model were 0.82, 0.86, 0.93, and 0.96 to predict ≥F1, ≥F2, ≥F3, and F4 in the validation set, which were significantly higher than those of serum markers and shear wave elastography (all p < 0.05), except for the ≥ F1 levels ( p = 0.09). The AUCs of the series model were 0.93, 0.86, 0.95, and 0.84 to predict inflammation stages ≥G1, ≥G2, ≥G3, and G4, respectively. Decision trees realized 5 continuous classifications of fibrosis and inflammation. Inflammation could enhance the mild fibrosis stage classification while showing limited influences on severe fibrosis or cirrhosis diagnosis. CONCLUSIONS: Dual-elasto demonstrated high performance in the continuous discrimination of fibrosis and inflammation in patients with HBV and could be used to diagnose mild fibrosis without the influence of inflammation.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Hepatitis B Crónica , Adulto , Humanos , Hepatitis B Crónica/complicaciones , Hepatitis B Crónica/diagnóstico por imagen , Hepatitis B Crónica/patología , Estudios Prospectivos , Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/etiología , Inflamación/diagnóstico por imagen , Inflamación/patología , Hígado/diagnóstico por imagen , Hígado/patología
2.
EMBO Rep ; 24(9): e55859, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37501540

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two aging-related neurodegenerative diseases that share common key features, including aggregation of pathogenic proteins, dysfunction of mitochondria, and impairment of autophagy. Mutations in ubiquilin 2 (UBQLN2), a shuttle protein in the ubiquitin-proteasome system (UPS), can cause ALS/FTD, but the mechanism underlying UBQLN2-mediated pathogenesis is still uncertain. Recent studies indicate that mitophagy, a selective form of autophagy which is crucial for mitochondrial quality control, is tightly associated with neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and ALS. In this study, we show that after Parkin-dependent ubiquitination of damaged mitochondria, UBQLN2 is recruited to poly-ubiquitinated mitochondria through the UBA domain. UBQLN2 cooperates with the chaperone HSP70 to promote UPS-driven degradation of outer mitochondrial membrane (OMM) proteins. The resulting rupture of the OMM triggers the autophagosomal recognition of the inner mitochondrial membrane receptor PHB2. UBQLN2 is required for Parkin-mediated mitophagy and neuronal survival upon mitochondrial damage, and the ALS/FTD pathogenic mutations in UBQLN2 impair mitophagy in primary cultured neurons. Taken together, our findings link dysfunctional mitophagy to UBQLN2-mediated neurodegeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedades Neurodegenerativas , Humanos , Membranas Mitocondriales/metabolismo , Esclerosis Amiotrófica Lateral/genética , Mitofagia , Demencia Frontotemporal/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Relacionadas con la Autofagia/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
3.
BMC Oral Health ; 24(1): 117, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245765

RESUMEN

OBJECTIVE: A meta-analysis was performed to assess the epidemiological correlation between dietary intake of various types of vitamin intake and the risk of periodontal disease. METHODS: A comprehensive computerized search was conducted in eight databases, namely PubMed, Web of Science, Embase, Cochrane Library, China Biology Medicine Disc, CNKI, VIP, and WanFang Database, and a random effect model was applied to combine pooled odds ratio (ORs) with corresponding 95% confidence intervals (CIs) of the included studies, and the sensitivity analysis was performed to explore the impact of a single study on the comprehensive results. RESULTS: We finally included 45 effect groups from 23 observational studies, with a total number of study participants of 74,488. The results showed that higher levels of vitamin A (OR: 0.788, 95% CI: 0.640-0.971), vitamin B complex (OR: 0.884, 95% CI: 0.824-0.948), vitamin C (OR: 0.875, 95% CI: 0.775-0.988), vitamin D (OR: 0.964, 95% CI: 0.948-0.981), and vitamin E (OR: 0.868, 95% CI: 0.776-0.971) intake all were negatively correlated with periodontal disease. After removing each study, leave-one-out sensitivity analysis indicated no significant change in the overall results of any of the five meta-analyses. CONCLUSIONS: The results from this meta-analysis demonstrated a negative association between high-dose vitamin A, vitamin B complex, vitamin C, vitamin D, and vitamin E consumption and the likelihood of developing periodontal disease, revealing the significant role of vitamins in preventing periodontal disease.


Asunto(s)
Enfermedades Periodontales , Complejo Vitamínico B , Humanos , Ácido Ascórbico , Ácido Fólico , Enfermedades Periodontales/epidemiología , Vitamina A , Vitamina D , Vitamina E
4.
J Biol Chem ; 298(12): 102704, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36379251

RESUMEN

The autophagic clearance of mitochondria has been defined as mitophagy, which is triggered by mitochondrial damage and serves as a major pathway for mitochondrial homeostasis and cellular quality control. PINK1 and Parkin-mediated mitophagy is the most extensively studied form of mitophagy, which has been linked to the pathogenesis of neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The current paradigm of this particular mitophagy pathway is that the ubiquitination of the outer mitochondrial membrane is the key step to enable the recognition of damaged mitochondria by the core autophagic component autophagosome. However, whether the inner mitochondrial membrane (IMM) is ubiquitinated by Parkin and its contribution to sufficient mitophagy remain unclear. Here, using molecular, cellular, and biochemical approaches, we report that prohibitin 2 (PHB2), an essential IMM receptor for mitophagy, is ubiquitinated by Parkin and thereby gains higher affinity to the autophagosome during mitophagy. Our findings suggest that Parkin directly binds to PHB2 through its RING1 domain and promotes K11- and K33-linked ubiquitination on K142/K200 sites of PHB2, thereby enhancing the interaction between PHB2 and MAP1LC3B/LC3B. Interestingly and importantly, our study allows us to propose a novel model in which IMM protein PHB2 serves as both a receptor and a ubiquitin-mediated base for autophagosome recruitment to ensure efficient mitophagy.


Asunto(s)
Membranas Mitocondriales , Mitofagia , Prohibitinas , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Mitofagia/fisiología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Prohibitinas/metabolismo , Humanos
5.
Theor Appl Genet ; 136(5): 116, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37093290

RESUMEN

KEY MESSAGE: Two candidate genes (ZmbZIP113 and ZmTSAH1) controlling low-temperature germination ability were identified by QTL-seq and integrative transcriptomic analyses. The functional verification results showed that two candidate genes positively regulated the low-temperature germination ability of IB030. Low-temperature conditions cause slow maize (Zea mays L.) seed metabolism, resulting in slow seedling emergence and irregular seedling emergence, which can cause serious yield loss. Thus, improving a maize cultivar's low-temperature germination ability (LTGA) is vital for increasing yield production. Wild relatives of maize, such as Z. perennis and Tripsacum dactyloides, are strongly tolerant of cold stress and can thus be used to improve the LTGA of maize. In a previous study, the genetic bridge MTP was constructed (from maize, T. dactyloides, and Z. perennis) and used to obtain a highly LTGA maize introgression line (IB030) by backcross breeding. In this study, IB030 (Strong-LTGA) and Mo17 (Weak-LTGA) were selected as parents to construct an F2 offspring. Additionally, two major QTLs (qCS1-1 and qCS10-1) were mapped. Then, RNA-seq was performed using seeds of IB030 and the recurrent parent B73 treated at 10 °C for 27 days and 25 °C for 7 days, respectively, and two candidate genes (ZmbZIP113 and ZmTSAH1) controlling LTGA were located using QTL-seq and integrative transcriptomic analyses. The functional verification results showed that the two candidate genes positively regulated LTGA of IB030. Notably, homologous cloning showed that the source of variation in both candidate genes was the stable inheritance of introgressed alleles from Z. perennis. This study was thus able to analyze the LTGA mechanism of IB030 and identify resistance genes for genetic improvement in maize, and it proved that using MTP genetic bridge confers desirable traits or phenotypes of Z. perennis and tripsacum essential to maize breeding systems.


Asunto(s)
Transcriptoma , Zea mays , Zea mays/genética , Temperatura , Fitomejoramiento , Sitios de Carácter Cuantitativo , Poaceae/genética , Fenotipo , Germinación
6.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36768951

RESUMEN

Chilling injury owing to low temperatures severely affects the growth and development of maize (Zea mays.L) seedlings during the early and late spring seasons. The existing maize germplasm is deficient in the resources required to improve maize's ability to tolerate cold injury. Therefore, it is crucial to introduce and identify excellent gene/QTLs that confer cold tolerance to maize for sustainable crop production. Wild relatives of maize, such as Z. perennis and Tripsacum dactyloides, are strongly tolerant to cold and can be used to improve the cold tolerance of maize. In a previous study, a genetic bridge among maize that utilized Z. perennis and T. dactyloides was created and used to obtain a highly cold-tolerant maize introgression line (MIL)-IB030 by backcross breeding. In this study, two candidate genes that control relative electrical conductivity were located on MIL-IB030 by forward genetics combined with a weighted gene co-expression network analysis. The results of the phenotypic, genotypic, gene expression, and functional verification suggest that two candidate genes positively regulate cold tolerance in MIL-IB030 and could be used to improve the cold tolerance of cultivated maize. This study provides a workable route to introduce and mine excellent genes/QTLs to improve the cold tolerance of maize and also lays a theoretical and practical foundation to improve cultivated maize against low-temperature stress.


Asunto(s)
Plantones , Zea mays , Plantones/genética , Transcriptoma , Fitomejoramiento , Mapeo Cromosómico , Frío
7.
Chemistry ; 27(32): 8372-8379, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-33872432

RESUMEN

A new family of hydrazone modified cytidine phosphoramidite building block was synthesized and incorporated into oligodeoxynucleotides to construct photoswitchable DNA strands. The E-Z isomerization triggered by the irradiation of blue light with a wavelength of 450 nm was investigated and confirmed by 1 H NMR spectroscopy and HPLC in the contexts of both nucleoside and oligodeoxynucleotide. The light activated Z form isomer of this hydrazone-cytidine with a six-member intramolecular hydrogen bond was found to inhibit DNA synthesis in the primer extension model by using Bst DNA polymerase. In addition, the hydrazone modification caused the misincorporation of dATP together with dGTP into the growing DNA strand with similar selectivity, highlighting a potential G to A mutation. This work provides a novel functional DNA building block and an additional molecular tool that has potential chemical biology and biomedicinal applications to control DNA synthesis and DNA-enzyme interactions using the cell friendly blue light irradiation.


Asunto(s)
Citidina , Hidrazonas , ADN , ADN Polimerasa Dirigida por ADN , Enlace de Hidrógeno
8.
EMBO J ; 35(2): 121-42, 2016 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-26702100

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by selective loss of motor neurons in brain and spinal cord. TAR DNA-binding protein 43 (TDP-43) was identified as a major component of disease pathogenesis in ALS, frontotemporal lobar degeneration (FTLD), and other neurodegenerative disease. Despite the fact that TDP-43 is a multi-functional protein involved in RNA processing and a large number of TDP-43 RNA targets have been discovered, the initial toxic effect and the pathogenic mechanism underlying TDP-43-linked neurodegeneration remain elusive. In this study, we found that loss of TDP-43 strongly induced a nuclear translocation of TFEB, the master regulator of lysosomal biogenesis and autophagy, through targeting the mTORC1 key component raptor. This regulation in turn enhanced global gene expressions in the autophagy-lysosome pathway (ALP) and increased autophagosomal and lysosomal biogenesis. However, loss of TDP-43 also impaired the fusion of autophagosomes with lysosomes through dynactin 1 downregulation, leading to accumulation of immature autophagic vesicles and overwhelmed ALP function. Importantly, inhibition of mTORC1 signaling by rapamycin treatment aggravated the neurodegenerative phenotype in a TDP-43-depleted Drosophila model, whereas activation of mTORC1 signaling by PA treatment ameliorated the neurodegenerative phenotype. Taken together, our data indicate that impaired mTORC1 signaling and influenced ALP may contribute to TDP-43-mediated neurodegeneration.


Asunto(s)
Autofagia/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas de Unión al ADN/metabolismo , Lisosomas/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Línea Celular , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Drosophila , Degeneración Lobar Frontotemporal/metabolismo , Células HEK293 , Células HeLa , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Modelos Biológicos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Ratas , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
9.
Biochem Biophys Res Commun ; 526(1): 231-238, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32204915

RESUMEN

A key feature of amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders including Alzheimer disease (AD), Parkinson disease (PD) and Huntington's disease (HD) is abnormal aggregation and deposition of misfolded proteins. Previous studies have shown that autophagy plays an important role in the clearance of disease-linked protein aggregates. In the current study, we report that ibudilast, which is a non-selective inhibitor of phosphodiesterases (PDEs) and an anti-inflammation drug, can induce autophagy and lysosomal biogenesis through mammalian target of rapamycin complex 1 - transcription factor EB (mTORC1-TFEB) signaling. We have found that ibudilast significantly enhances the clearance of disease-linked TAR DNA binding protein (TDP-43) and superoxide dismutase 1 (SOD1) protein aggregates in transfected cellular models carrying corresponding gene mutations. The mechanistic study revealed that ibudilast could markedly enhance TFEB nuclear translocation and increase the autolysosomes by inhibiting mTORC1 activity. We have also demonstrated that ibudilast could protect TDP-43-induced cytotoxicity in motor neuron-like NSC-34 cells. Collectively, our study identifies ibudilast as an autophagy enhancer and provides insights into the molecular basis of ibudilast for the potential treatment of several neurodegenerative disorders.


Asunto(s)
Autofagia , Proteínas de Unión al ADN/metabolismo , Lisosomas/metabolismo , Fármacos Neuroprotectores/farmacología , Agregado de Proteínas , Piridinas/farmacología , Superóxido Dismutasa-1/metabolismo , Esclerosis Amiotrófica Lateral/patología , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagia/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Muerte Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Lisosomas/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fusión de Membrana/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Agregado de Proteínas/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos
10.
Mol Pharm ; 17(10): 3857-3869, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32833457

RESUMEN

Disulfiram (DSF) is an FDA-approved anti-alcoholic drug that has recently proven to be effective in cancer treatment. However, the short half-life in the bloodstream and the metal ion-dependent antitumor activity significantly limited the further application of DSF in the clinical field. To this end, we constructed a silk fibroin modified disulfiram/zinc oxide nanocomposites (SF/DSF@ZnO) to solubilize and stabilize DSF, and, more importantly, achieve pH triggered Zn2+ release and subsequent synergistic antitumor activity. The prepared SF/DSF@ZnO nanocomposites were spherical and had a high drug loading. Triggered by the lysosomal pH, SF/DSF@ZnO could induce the rapid release of Zn2+ under the acidic conditions and caused nanoparticulate disassembly along with DSF release. In vitro experiments showed that cytotoxicity of DSF could be enhanced by the presence of Zn2+, and further amplified when encapsulated into SF/DSF@ZnO nanocomposites. It was confirmed that the significantly amplified cytotoxicity of SF/DSF@ZnO was resulted from pH-triggered Zn2+ release, inhibited cell migration, and increased ROS production. In vivo study showed that SF/DSF@ZnO nanocomposites significantly increased the tumor accumulation and prolonged the retention time. In vivo antitumor experiments in the xenograft model showed that SF/DSF@ZnO exerted the highest tumor-inhibition rate among all the drug treatments. Therefore, this exquisite study established silk fibroin-modified disulfiram/zinc oxide nanocomposites, SF/DSF@ZnO, where ZnO not only acted as a delivery carrier but also served as a metal ion reservoir to achieve synergistic antitumor efficacy. The established DSF nanoformulation displayed excellent therapeutic potential in future cancer treatment.


Asunto(s)
Antineoplásicos/farmacocinética , Nanocompuestos/administración & dosificación , Neoplasias/tratamiento farmacológico , Zinc/farmacocinética , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Bombyx/química , Cationes Bivalentes/farmacocinética , Línea Celular Tumoral/trasplante , Modelos Animales de Enfermedad , Disulfiram/administración & dosificación , Disulfiram/química , Disulfiram/farmacocinética , Composición de Medicamentos/métodos , Liberación de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Femenino , Fibroínas/química , Semivida , Humanos , Concentración de Iones de Hidrógeno , Ratones , Neoplasias/patología , Óxido de Zinc/administración & dosificación , Óxido de Zinc/química , Óxido de Zinc/farmacocinética
11.
Acta Pharmacol Sin ; 41(1): 93-100, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31285534

RESUMEN

PARK2, which encodes Parkin, is a disease-causing gene for both neurodegenerative disorders and cancer. Parkin can function as a neuroprotector that plays a crucial role in the regulation of mitophagy, and germline mutations in PARK2 are associated with Parkinson's disease (PD). Intriguingly, recent studies suggest that Parkin can also function as a tumor suppressor and that somatic and germline mutations in PARK2 are associated with various human cancers, including lung cancer. However, it is presently unknown how the tumor suppressor activity of Parkin is affected by these mutations and whether it is associated with mitophagy. Herein, we show that wild-type (WT) Parkin can rapidly translocate onto mitochondria following mitochondrial damage and that Parkin promotes mitophagic clearance of mitochondria in lung cancer cells. However, lung cancer-linked mutations inhibit the mitochondrial translocation and ubiquitin-associated activity of Parkin. Among all lung cancer-linked mutants that we tested, A46T Parkin failed to translocate onto mitochondria and could not recruit downstream mitophagic regulators, including optineurin (OPTN) and TFEB, whereas N254S and R275W Parkin displayed slower mitochondrial translocation than WT Parkin. Moreover, we found that deferiprone (DFP), an iron chelator that can induce mitophagy, greatly increased the death of A46T Parkin-expressing lung cancer cells. Taken together, our results reveal a novel mitophagic mechanism in lung cancer, suggesting that lung cancer-linked mutations in PARK2 are associated with impaired mitophagy and identifying DFP as a novel therapeutic agent for PARK2-linked lung cancer and possibly other types of cancers driven by mitophagic dysregulation.


Asunto(s)
Genes Supresores de Tumor , Mutación de Línea Germinal/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mitofagia/genética , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Células A549 , Muerte Celular/efectos de los fármacos , Deferiprona/farmacología , Humanos , Quelantes del Hierro/farmacología , Neoplasias Pulmonares/metabolismo , Mitofagia/efectos de los fármacos , Células Tumorales Cultivadas , Ubiquitina-Proteína Ligasas/metabolismo
12.
Genomics ; 111(3): 398-406, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-29496514

RESUMEN

Long non-coding RNAs play significant roles in many biological processes. The roles of lncRNAs in Pichia pastoris remain unclear. In this work, we focused on the identification of lncRNAs in P. pastoris and exploration of their potential roles in stress response to PLA2 overexpression and methanol induction. By strand specific RNA sequencing, 208 novel long non-coding RNAs were identified and analyzed. Bioinformatic analysis showed potential trans-target genes and cis-regulated genes of 39 differential lncRNAs. Functional annotation and sequence motif analysis indicated that lncRNAs participate in pathways related to methanol degradation and production of the recombinant protein. The differential expression of lncRNAs was validated by qRT-PCR. Lastly, the potential functions of three lncRNAs were evaluated by knockdown of their expression and analysis of the expression levels of target genes. Our study identifies novel lncRNAs in P. pastoris induced during use as a bioreactor, facilitating future functional research.


Asunto(s)
Pichia/genética , ARN Largo no Codificante/genética , Estrés Fisiológico , Genoma Fúngico , Pichia/metabolismo
13.
Hum Mol Genet ; 26(10): 1877-1889, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28334804

RESUMEN

Mutations in optineurin (OPTN) are associated with several human disorders including amyotrophic lateral sclerosis (ALS) and primary open-angle glaucoma (POAG). OPTN is known to be a multifunctional autophagy receptor that plays important roles in NF-κB signaling, vesicle trafficking, maintenance of the Golgi apparatus and autophagy. Given that a loss of neurons and an abnormal aggregation of disease proteins are two key features of neurodegenerative diseases, protein quality control systems are considered to be tightly associated with neurodegeneration. In this study, we investigated the involvement of the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway, two major intracellular protein quality control systems, in the regulation of wild-type (WT) OPTN, ALS-linked mutant E478G OPTN and POAG-linked mutant E50K OPTN. Our data revealed that the UPS, not the autophagy-lysosome pathway, is the major system for degradation and aggregation of OPTN. Moreover, we found that Hrd1, an E3 ubiquitin ligase, could play an important role in the protein quality control of OPTN. Our results demonstrated that overexpression of Hrd1 increased the proteasomal degradation and microtubule-dependent aggresome formation of OPTN in the microtubular organizing center, whereas knockdown of Hrd1 stabilized OPTN and inhibited aggresome formation of OPTN.


Asunto(s)
Factor de Transcripción TFIIIA/metabolismo , Ubiquitina-Proteína Ligasas/genética , Esclerosis Amiotrófica Lateral/genética , Autofagia/genética , Proteínas de Ciclo Celular , Glaucoma de Ángulo Abierto/genética , Células HEK293 , Humanos , Cuerpos de Inclusión/metabolismo , Lisosomas/metabolismo , Proteínas de Transporte de Membrana , Mutación , FN-kappa B/metabolismo , Unión Proteica , Transporte de Proteínas , Transducción de Señal , Ubiquitina , Ubiquitina-Proteína Ligasas/metabolismo
14.
Pharmacol Res ; 145: 104256, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31054312

RESUMEN

Islet transplantation is the experimental strategy to treat type 1 diabetes by transplanting isolated islets from a donor pancreas into the recipient. While significant progress has been made in the islet transplantation field, islet loss before and after transplantation is still the major obstacle that currently precludes its widespread application. Islet must survive from possible cellular damages during the isolation procedure, storage time, islet injection process and post-transplantation immune rejection, only then the survived islets could produce insulin, actively regulating the blood glucose level. Therefore, islet protection needs to be addressed, especially regarding oxidative stress and immune response induced islet cell damages in diabetic patients. Many clinical data have shown that mildly elevated bilirubin levels in the body negatively correlate to the occurrence of an array of diseases that are related to increased oxidative stress, especially diabetes, and its complications. Recent studies confirmed that bilirubin helps receivers to suppress immune reaction and enable prolonged tolerance to islet transplantation. In this paper, we will review the pharmacological mechanism of bilirubin to modulate oxidative cellular damage and chronic inflammatory reaction in both diabetes and islet transplantation process. Also, we will present the clinical evidence of a strong correlation in bilirubin and diabetes. More importantly, we will summarize undergoing therapeutic applications of bilirubin in islet transplantation and discuss formulation approaches designed to overcome bilirubin delivery issues for future use.


Asunto(s)
Bilirrubina/uso terapéutico , Diabetes Mellitus Tipo 1/terapia , Trasplante de Islotes Pancreáticos , Animales , Bilirrubina/farmacología , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Estrés Oxidativo/efectos de los fármacos
15.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 50(3): 334-338, 2019 May.
Artículo en Zh | MEDLINE | ID: mdl-31631599

RESUMEN

OBJECTIVE: To study the mechanism of renal injury in Lepr db/ db mice with the leptin receptor homozygous deficiency. METHODS: Ten male of 28-week-old Lepr db/+ mice with leptin receptor heterozygous deficiency were selected as control group and ten male Lepr db/ db mice with leptin receptor homozygous deficiency were used in this study. After fasting for 8 hours, the body mass, fasting blood glucose (FBG) and glycosylated hemoglobulin (HbA1c) of the mice were measured. Blood of the mice was obtained from femoral artery before euthanasia. Serum creatinine (CRE), blood urea nitrogen (BUN), superoxide dismutase (SOD), glutathione (GSH) and malonaldehyde (MDA) were detected by corresponding kits, and serum interleukin-1ß (IL-1ß), monocyte chemotactic protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) were measured using enzyme-linked immunosorbent assay (ELISA) method. The kidney was taken for pathological observation. The expression levels of nuclear factor E2-related factor 2 (Nrf2) and nuclear factor kappa B (NF-κB) in renal were analyzed by Western blot. The mitochondria of renal was isolated by the corresponding kit. Meanwhile, the expression level of lipoic acid synthase (LIAS) in renal mitochondria was measured by Western blot. RESULTS: The body mass, FPG, HbA1c, CRE and BUN levels of the Lepr db/ db mice were significantly increased in comparison with the Lepr db/+ mice ( P<0.05). Compared with the Lepr db/+ mice, the Lepr db/ db mice renal exhibited glomerular hypertrophy, thickened basement membrane and capillary wall, the mesangial matrix expansion and mesangial cell hyperplasia. Compared with the Lepr db/+ mice, the serum level of GSH in the Lepr db/ db mice was decreased significantly ( P<0.05). The levels of MDA and concentrations of MCP-1, IL-1ß and TNF-α in serum of the Lepr db/ db mice were higher than those of the Lepr db/+ mice ( P<0.05). Compared with the Lepr db/+ mice, the expression of LIAS and Nrf2 protein in the Lepr db/ db mice renal were decreased ( P<0.05), while the expression of NF-κB protein was increased ( P<0.05). CONCLUSION: LIAS, Nrf2 and NF-κB might play significant roles through regulation of oxidative stress and inflammation in the renal injury of Lepr db/ db mice.


Asunto(s)
Riñón/patología , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Receptores de Leptina/genética , Sulfurtransferasas/metabolismo , Animales , Masculino , Ratones , Ratones Noqueados , Estrés Oxidativo
16.
Hum Mol Genet ; 25(1): 83-96, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26516189

RESUMEN

TDP-43 was identified as the major component of ubiquitin and autophagosome-positive cytoplasmic inclusions in neurons in the large majority of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD) patients. It has been shown that a loss of nuclear TDP-43 in combination with enhanced cytoplasmic mislocalization of TDP-43, which is associated with accumulation of TDP-43 aggregates in the cytosol, is an early and key event in TDP-43-mediated neurodegeneration. However, the mechanism underlying TDP-43 nucleocytoplasmic shuttling is still not clear. Here, we show that the tumor suppressor folliculin (FLCN) is a novel positive regulator of TDP-43 cytoplasmic translocation. FLCN directly interacts with TDP-43. The amino acids 202-299 of FLCN and RNA-recognition motif domains of TDP-43 are necessary for their interaction. In addition, both exogenous and endogenous FLCNs are required for TDP-43 cytoplasmic accumulation, protein aggregation and stress granule formation. Overall, our study suggests that FLCN may play an important role in the regulation of TDP-43 nucleocytoplasmic shuttling and TDP-43-mediated proteinopathy.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteínas de Unión al ADN/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Síndrome de Birt-Hogg-Dubé , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Células HEK293 , Humanos , Estructura Terciaria de Proteína
17.
Molecules ; 23(10)2018 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-30301216

RESUMEN

Didymin (isosakuranetin 7-O-rutinoside) is an orally bioactive dietary flavonoid glycoside first found in citrus fruits. Traditionally, this flavonoid has long been used in Asian countries as a dietary antioxidant. Recent studies have provided newer insights into this pleiotropic compound, which could regulate multiple biological activities of many important signaling molecules in health and disease. Emerging data also presented the potential therapeutic application of dietary flavonoid glycoside didymin against cancer, neurological diseases, liver diseases, cardiovascular diseases, and other diseases. In this review, we briefly introduce the source and extraction methods of didymin, and summarize its potential therapeutic application in the treatment of various diseases, with an emphasis on molecular targets and mechanism that contributes to the observed therapeutic effects. The dietary flavonoid didymin can be used to affect health and disease with multiple therapeutic targets, and it is anticipated that this review will stimulate the future development of this potential dietary medicine.


Asunto(s)
Antioxidantes/uso terapéutico , Citrus/química , Flavonoides/uso terapéutico , Glicósidos/uso terapéutico , Enfermedades Cardiovasculares/dietoterapia , Suplementos Dietéticos , Flavonoides/química , Glicósidos/química , Humanos , Neoplasias/dietoterapia , Enfermedades del Sistema Nervioso/dietoterapia
18.
Hum Mol Genet ; 24(9): 2426-41, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25575510

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are the two common neurodegenerative diseases that have been associated with the GGGGCC·GGCCCC repeat RNA expansion in a noncoding region of C9orf72. It has been previously reported that unconventional repeat-associated non-ATG (RAN) translation of GGGGCC·GGCCCC repeats produces five types of dipeptide-repeat proteins (referred to as RAN proteins): poly-glycine-alanine (GA), poly-glycine-proline (GP), poly-glycine-arginine (GR), poly-proline-arginine (PR) and poly-proline-alanine (PA). Although protein aggregates of RAN proteins have been found in patients, it is unclear whether RAN protein aggregation induces neurotoxicity. In the present study, we aimed to understand the biological properties of all five types of RAN proteins. Surprisingly, our results showed that none of these RAN proteins was aggregate-prone in our cellular model and that the turnover of these RAN proteins was not affected by the ubiquitin-proteasome system or autophagy. Moreover, poly-GR and poly-PR, but not poly-GA, poly-GP or poly-PA, localized to the nucleolus and induced the translocation of the key nucleolar component nucleophosmin, leading to nucleolar stress and cell death. This poly-GR- and poly-PR-mediated defect in nucleolar function was associated with the suppression of ribosomal RNA synthesis and the impairment of stress granule formation. Taken together, the results of the present study suggest a simple model of the molecular mechanisms underlying RAN translation-mediated cytotoxicity in C9orf72-linked ALS/FTD in which nucleolar stress, but not protein aggregation, is the primary contributor to C9orf72-linked neurodegeneration.


Asunto(s)
Nucléolo Celular/genética , Biosíntesis de Proteínas/genética , Proteínas/genética , Estrés Fisiológico , Proteína C9orf72 , Muerte Celular/efectos de los fármacos , Línea Celular , Nucléolo Celular/metabolismo , Dipéptidos/genética , Dipéptidos/metabolismo , Dipéptidos/toxicidad , Expresión Génica , Genes Reporteros , Humanos , Cuerpos de Inclusión Intranucleares , Modelos Biológicos , Oligopéptidos/genética , Oligopéptidos/metabolismo , Oligopéptidos/toxicidad , Agregado de Proteínas , Transporte de Proteínas , Proteínas/química , Proteínas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
19.
Angew Chem Int Ed Engl ; 56(18): 5106-5110, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28371077

RESUMEN

A series of stable phosphonium salts have been synthesized via a novel four-component reaction of an arene nucleophile, 2-heteroatom substituted aryl aldehyde, and phosphine in presence of an acid. The phosphonium salts thus obtained were utilized for the synthesis of a variety of bis-heteroarenes, providing an efficient alternative method to the classical cross-coupling strategies.

20.
Cardiovasc Drugs Ther ; 30(3): 247-61, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26947349

RESUMEN

This study aims to investigate the preclinical performance and mechanism of a novel strategy of aFGF-loaded heparin-modified microbubbles (aFGF-HMB) combined with ultrasound-targeted microbubble destruction (UTMD) technique for diabetic cardiomyopathy (DCM) prevention. Type 1 diabetic rats were induced by streptozotocin. Twelve weeks after intervention, indexes from transthoracic echocardiography and cardiac catheterization showed that the left ventricular function in the aFGF-HMB/UTMD group was significantly improved compared with diabetes control (DM). From Picrosirius Red staining and TUNEL staining, the aFGF-HMB/UTMD group showed significant difference from the other groups. The cardiac collagen volume fraction (CVF) and myocardial cell apoptosis index (AI) in aFGF-HMB/UTMD group decreased to 7.2 % and 7.11 % respectively, compared with the DM group (CVF = 24.5 % and AI =20.3 % respectively). The results of myocardial microvascular density (MCD) also proved the strongest inhibition of aFGF-HMB/UTMD group on DCM progress. CD31 staining of aFGF-HMB/UTMD group reached 22 n/hrp, much higher than that of DM group (9 n/hrp). These results confirmed that the abnormalities including left ventricular dysfunction, myocardial fibrosis, cardiomyocytes apoptosis and microvascular rarefaction could be suppressed by twice weekly aFGF treatments for 12 consecutive weeks (free aFGF or aFGF-HMB+/-UTMD), with the strongest improvements observed in the aFGF-HMB/UTMD group (P < 0.05 vs free aFGF or aFGF-HMB). Western blot analyses of heart tissue further revealed the highest aFGF, anti-apoptosis protein (Bcl-2), VEGF-C, pAkt, pFoxo-3a levels and strongest reduction in pro-apoptosis proteins (Bax) level in aFGF-HMB/UTMD group. Overall, aFGF-HMB combined with UTMD technique might be developed as an effective strategy to prevent DCM in future clinical therapy.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Cardiomiopatías Diabéticas/tratamiento farmacológico , Factor 1 de Crecimiento de Fibroblastos/administración & dosificación , Heparina/administración & dosificación , Hipoglucemiantes/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Diabetes Mellitus Experimental/diagnóstico por imagen , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/diagnóstico por imagen , Diabetes Mellitus Tipo 1/metabolismo , Cardiomiopatías Diabéticas/diagnóstico por imagen , Cardiomiopatías Diabéticas/metabolismo , Ecocardiografía , Factor 1 de Crecimiento de Fibroblastos/farmacocinética , Factor 1 de Crecimiento de Fibroblastos/uso terapéutico , Corazón/diagnóstico por imagen , Heparina/química , Heparina/uso terapéutico , Hipoglucemiantes/uso terapéutico , Masculino , Microburbujas , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas Sprague-Dawley , Ondas Ultrasónicas , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA