Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 554
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(5): 722-740, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37060905

RESUMEN

Coronary artery disease (CAD) is a pandemic disease where up to half of the risk is explained by genetic factors. Advanced insights into the genetic basis of CAD require deeper understanding of the contributions of different cell types, molecular pathways, and genes to disease heritability. Here, we investigate the biological diversity of atherosclerosis-associated cell states and interrogate their contribution to the genetic risk of CAD by using single-cell and bulk RNA sequencing (RNA-seq) of mouse and human lesions. We identified 12 disease-associated cell states that we characterized further by gene set functional profiling, ligand-receptor prediction, and transcription factor inference. Importantly, Vcam1+ smooth muscle cell state genes contributed most to SNP-based heritability of CAD. In line with this, genetic variants near smooth muscle cell state genes and regulatory elements explained the largest fraction of CAD-risk variance between individuals. Using this information for variant prioritization, we derived a hybrid polygenic risk score (PRS) that demonstrated improved performance over a classical PRS. Our results provide insights into the biological mechanisms associated with CAD risk, which could make a promising contribution to precision medicine and tailored therapeutic interventions in the future.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Humanos , Aterosclerosis/genética , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/patología , Factores de Riesgo , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple/genética
2.
Circ Res ; 134(11): 1465-1482, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38655691

RESUMEN

BACKGROUND: Preclinical studies have shown the therapeutic potential of VEGF-B (vascular endothelial growth factor B) in revascularization of the ischemic myocardium, but the associated cardiac hypertrophy and adverse side effects remain a concern. To understand the importance of endothelial proliferation and migration for the beneficial versus adverse effects of VEGF-B in the heart, we explored the cardiac effects of autocrine versus paracrine VEGF-B expression in transgenic and gene-transduced mice. METHODS: We used single-cell RNA sequencing to compare cardiac endothelial gene expression in VEGF-B transgenic mouse models. Lineage tracing was used to identify the origin of a VEGF-B-induced novel endothelial cell population and adeno-associated virus-mediated gene delivery to compare the effects of VEGF-B isoforms. Cardiac function was investigated using echocardiography, magnetic resonance imaging, and micro-computed tomography. RESULTS: Unlike in physiological cardiac hypertrophy driven by a cardiomyocyte-specific VEGF-B transgene (myosin heavy chain alpha-VEGF-B), autocrine VEGF-B expression in cardiac endothelium (aP2 [adipocyte protein 2]-VEGF-B) was associated with septal defects and failure to increase perfused subendocardial capillaries postnatally. Paracrine VEGF-B led to robust proliferation and myocardial migration of a novel cardiac endothelial cell lineage (VEGF-B-induced endothelial cells) of endocardial origin, whereas autocrine VEGF-B increased proliferation of VEGF-B-induced endothelial cells but failed to promote their migration and efficient contribution to myocardial capillaries. The surviving aP2-VEGF-B offspring showed an altered ratio of secreted VEGF-B isoforms and developed massive pathological cardiac hypertrophy with a distinct cardiac vessel pattern. In the normal heart, we found a small VEGF-B-induced endothelial cell population that was only minimally expanded during myocardial infarction but not during physiological cardiac hypertrophy associated with mouse pregnancy. CONCLUSIONS: Paracrine and autocrine secretions of VEGF-B induce expansion of a specific endocardium-derived endothelial cell population with distinct angiogenic markers. However, autocrine VEGF-B signaling fails to promote VEGF-B-induced endothelial cell migration and contribution to myocardial capillaries, predisposing to septal defects and inducing a mismatch between angiogenesis and myocardial growth, which results in pathological cardiac hypertrophy.


Asunto(s)
Cardiomegalia , Linaje de la Célula , Endocardio , Células Endoteliales , Ratones Transgénicos , Factor B de Crecimiento Endotelial Vascular , Animales , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Factor B de Crecimiento Endotelial Vascular/metabolismo , Factor B de Crecimiento Endotelial Vascular/genética , Ratones , Endocardio/metabolismo , Endocardio/patología , Comunicación Paracrina , Proliferación Celular , Comunicación Autocrina , Ratones Endogámicos C57BL , Femenino , Masculino , Movimiento Celular
3.
Circ Res ; 134(11): 1405-1423, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38639096

RESUMEN

BACKGROUND: While our understanding of the single-cell gene expression patterns underlying the transformation of vascular cell types during the progression of atherosclerosis is rapidly improving, the clinical and pathophysiological relevance of these changes remains poorly understood. METHODS: Single-cell RNA sequencing data generated with SmartSeq2 (≈8000 genes/cell) in 16 588 single cells isolated during atherosclerosis progression in Ldlr-/-Apob100/100 mice with human-like plasma lipoproteins and from humans with asymptomatic and symptomatic carotid plaques was clustered into multiple subtypes. For clinical and pathophysiological context, the advanced-stage and symptomatic subtype clusters were integrated with 135 tissue-specific (atherosclerotic aortic wall, mammary artery, liver, skeletal muscle, and visceral and subcutaneous, fat) gene-regulatory networks (GRNs) inferred from 600 coronary artery disease patients in the STARNET (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task) study. RESULTS: Advanced stages of atherosclerosis progression and symptomatic carotid plaques were largely characterized by 3 smooth muscle cells (SMCs), and 3 macrophage subtype clusters with extracellular matrix organization/osteogenic (SMC), and M1-type proinflammatory/Trem2-high lipid-associated (macrophage) phenotypes. Integrative analysis of these 6 clusters with STARNET revealed significant enrichments of 3 arterial wall GRNs: GRN33 (macrophage), GRN39 (SMC), and GRN122 (macrophage) with major contributions to coronary artery disease heritability and strong associations with clinical scores of coronary atherosclerosis severity. The presence and pathophysiological relevance of GRN39 were verified in 5 independent RNAseq data sets obtained from the human coronary and aortic artery, and primary SMCs and by targeting its top-key drivers, FRZB and ALCAM in cultured human coronary artery SMCs. CONCLUSIONS: By identifying and integrating the most gene-rich single-cell subclusters of atherosclerosis to date with a coronary artery disease framework of GRNs, GRN39 was identified and independently validated as being critical for the transformation of contractile SMCs into an osteogenic phenotype promoting advanced, symptomatic atherosclerosis.


Asunto(s)
Aterosclerosis , Redes Reguladoras de Genes , Análisis de la Célula Individual , Humanos , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Ratones , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Masculino , Placa Aterosclerótica , Progresión de la Enfermedad , Femenino , Macrófagos/metabolismo , Macrófagos/patología , Ratones Noqueados , Receptores de LDL/genética , Receptores de LDL/metabolismo , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología
4.
Nucleic Acids Res ; 52(10): 5610-5623, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38554106

RESUMEN

The use of androgen receptor (AR) inhibitors in prostate cancer gives rise to increased cellular lineage plasticity resulting in resistance to AR-targeted therapies. In this study, we examined the chromatin landscape of AR-positive prostate cancer cells post-exposure to the AR inhibitor enzalutamide. We identified a novel regulator of cell plasticity, the homeobox transcription factor SIX2, whose motif is enriched in accessible chromatin regions after treatment. Depletion of SIX2 in androgen-independent PC-3 prostate cancer cells induced a switch from a stem-like to an epithelial state, resulting in reduced cancer-related properties such as proliferation, colony formation, and metastasis both in vitro and in vivo. These effects were mediated through the downregulation of the Wnt/ß-catenin signalling pathway and subsequent reduction of nuclear ß-catenin. Collectively, our findings provide compelling evidence that the depletion of SIX2 may represent a promising strategy for overcoming the cell plasticity mechanisms driving antiandrogen resistance in prostate cancer.


Asunto(s)
Benzamidas , Plasticidad de la Célula , Proteínas de Homeodominio , Nitrilos , Feniltiohidantoína , Neoplasias de la Próstata , Receptores Androgénicos , Vía de Señalización Wnt , beta Catenina , Animales , Humanos , Masculino , Ratones , Benzamidas/farmacología , beta Catenina/metabolismo , beta Catenina/genética , Línea Celular Tumoral , Plasticidad de la Célula/genética , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Nitrilos/farmacología , Células PC-3 , Feniltiohidantoína/farmacología , Feniltiohidantoína/análogos & derivados , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Vía de Señalización Wnt/efectos de los fármacos
5.
Eur Heart J ; 45(4): 255-264, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-37634134

RESUMEN

BACKGROUND AND AIMS: Clinical management of critical limb-threatening ischaemia (CLTI) is focused on prevention and treatment of atherosclerotic arterial occlusions. The role of microvascular pathology in disease progression is still largely unspecified and more importantly not utilized for treatment. The aim of this explorative study was to characterize the role of the microvasculature in CLTI pathology. METHODS: Clinical high-resolution imaging of CLTI patients (n = 50) and muscle samples from amputated CLTI limbs (n = 40) were used to describe microvascular pathology of CLTI at the level of resting muscle blood flow and microvascular structure, respectively. Furthermore, a chronic, low arterial driving pressure-simulating ischaemia model in rabbits (n = 24) was used together with adenoviral vascular endothelial growth factor A gene transfers to study the effect of microvascular alterations on muscle outcome. RESULTS: Resting microvascular blood flow was not depleted but displayed decreased capillary transit time (P < .01) in CLTI muscles. Critical limb-threatening ischaemia muscle microvasculature also exhibited capillary enlargement (P < .001) and further arterialization along worsening of myofibre atrophy and detaching of capillaries from myofibres. Furthermore, CLTI-like capillary transformation was shown to worsen calf muscle force production (P < .05) and tissue outcome (P < .01) under chronic ischaemia in rabbits and in healthy, normal rabbit muscle. CONCLUSIONS: These findings depict a progressive, hypoxia-driven transformation of the microvasculature in CLTI muscles, which pathologically alters blood flow dynamics and aggravates tissue damage under low arterial driving pressure. Hypoxia-driven capillary enlargement can be highly important for CLTI outcomes and should therefore be considered in further development of diagnostics and treatment of CLTI.


Asunto(s)
Enfermedad Arterial Periférica , Humanos , Conejos , Animales , Enfermedad Arterial Periférica/terapia , Factores de Riesgo , Factor A de Crecimiento Endotelial Vascular , Isquemia , Hipoxia , Resultado del Tratamiento , Estudios Retrospectivos , Enfermedad Crónica
6.
J Biol Chem ; 299(11): 105291, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37748649

RESUMEN

Impaired oxygen homeostasis is a frequently encountered pathophysiological factor in multiple complex diseases, including cardiovascular disease and cancer. While the canonical hypoxia response pathway is well characterized, less is known about the role of noncoding RNAs in this process. Here, we investigated the nascent and steady-state noncoding transcriptional responses in endothelial cells and their potential roles in regulating the hypoxic response. Notably, we identify a novel antisense long noncoding RNA that convergently overlaps the majority of the hypoxia inducible factor 1 alpha (HIF1A) locus, which is expressed across several cell types and elevated in atherosclerotic lesions. The antisense (HIF1A-AS) is produced as a stable, unspliced, and polyadenylated nuclear retained transcript. HIF1A-AS is highly induced in hypoxia by both HIF1A and HIF2A and exhibits anticorrelation with the coding HIF1A transcript and protein expression. We further characterized this functional relationship by CRISPR-mediated bimodal perturbation of the HIF1A-AS promoter. We provide evidence that HIF1A-AS represses the expression of HIF1a in cis by repressing transcriptional elongation and deposition of H3K4me3, and that this mechanism is dependent on the act of antisense transcription itself. Overall, our results indicate a critical regulatory role of antisense mediated transcription in regulation of HIF1A expression and cellular response to hypoxia.


Asunto(s)
Células Endoteliales , ARN Largo no Codificante , Humanos , Hipoxia de la Célula , Células Endoteliales/metabolismo , Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Regiones Promotoras Genéticas , ARN Largo no Codificante/genética , Células Cultivadas
7.
Pflugers Arch ; 476(7): 1145-1154, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38703193

RESUMEN

Arrhythmia detection is essential when assessing the safety of novel drugs and therapies in preclinical studies. Many short-term arrhythmia monitoring methods exist, including non-invasive ECG and Holter. However, there are no reliable, long-term, non-invasive, or minimally invasive methods for cardiac arrhythmia follow-up in large animals that allows free movement with littermates. A long follow-up time is needed when estimating the impact of long-lasting drugs or therapies, such as gene therapy. We evaluated the feasibility and performance of insertable cardiac monitors (ICMs) in pigs for minimally invasive, long-term monitoring of cardiac arrhythmias that allows free movement and species-specific behavior. Multiple implantation sites were tested to assess signal quality. ICMs recognized reliably many different arrhythmias but failed to detect single extrasystoles. They also over-diagnosed T-waves, resulting in oversensing. Muscle activity and natural startles of the animals caused noise, leading to a heterogeneous signal requiring post-recording evaluation. In spite of these shortcomings, the ICMs showed to be very useful for minimally invasive long-term monitoring of cardiac rhythm in pigs.


Asunto(s)
Arritmias Cardíacas , Animales , Porcinos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/fisiopatología , Electrocardiografía Ambulatoria/instrumentación , Electrocardiografía Ambulatoria/métodos , Electrocardiografía/métodos , Electrocardiografía/instrumentación , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Monitoreo Fisiológico/veterinaria
8.
Am J Physiol Renal Physiol ; 327(3): F519-F531, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39024357

RESUMEN

Diabetes mellitus is one of the leading causes of chronic kidney disease and its progression to end-stage kidney disease (ESKD). Diabetic kidney disease (DKD) is characterized by glomerular hypertrophy, hyperfiltration, inflammation, and the onset of albuminuria, together with a progressive reduction in glomerular filtration rate. This progression is further accompanied by tubulointerstitial inflammation and fibrosis. Factors such as genetic predisposition, epigenetic modifications, metabolic derangements, hemodynamic alterations, inflammation, and inappropriate renin-angiotensin-aldosterone system (RAAS) activity contribute to the onset and progression of DKD. In this context, decades of work have focused on glycemic and blood pressure reduction strategies, especially targeting the RAAS to slow disease progression. Although much of the work has focused on targeting angiotensin II, emerging data support that the mineralocorticoid receptor (MR) is integral in the development and progression of DKD. Molecular mechanisms linked to the underlying pathophysiological changes derived from MR activation include vascular endothelial and epithelial cell responses to oxidative stress and inflammation. These responses lead to alterations in the microcirculatory environment, the abnormal release of extracellular vesicles, gut dysbiosis, epithelial-mesenchymal transition, and kidney fibrosis. Herein, we present recent experimental and clinical evidence on the MR in DKD onset and progress along with new MR-based strategies for the treatment and prevention of DKD.


Asunto(s)
Nefropatías Diabéticas , Receptores de Mineralocorticoides , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/fisiopatología , Humanos , Receptores de Mineralocorticoides/metabolismo , Animales , Sistema Renina-Angiotensina , Riñón/metabolismo , Riñón/patología , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Antagonistas de Receptores de Mineralocorticoides/farmacología , Transducción de Señal , Progresión de la Enfermedad
9.
J Urol ; 212(1): 74-86, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38704840

RESUMEN

PURPOSE: Nadofaragene firadenovec-vncg is a nonreplicating adenoviral vector-based gene therapy for bacillus Calmette-Guérin (BCG)-unresponsive carcinoma in situ (CIS) with/without high-grade Ta/T1. We report outcomes following 5 years of planned follow-up. MATERIALS AND METHODS: This open-label phase 3 trial (NCT02773849) enrolled patients with BCG-unresponsive nonmuscle-invasive bladder cancer in 2 cohorts: CIS ± Ta/T1 (CIS; n = 107) and Ta/T1 without CIS (Ta/T1 cohort; n = 50). Patients received 75 mL (3 × 1011 vp/mL) nadofaragene firadenovec intravesically once every 3 months with cystoscopy and cytology assessments, with continued treatment offered to those remaining high grade recurrence-free (HGRF). RESULTS: One hundred fifty-seven patients were enrolled from 33 US sites (n = 151 included in efficacy analyses). Median follow-up was 50.8 months (interquartile range 39.1-60.0), with 27% receiving ≥ 5 instillations and 7.6% receiving treatment for ≥ 57 months. Of patients with CIS 5.8% (95% CI 2.2-12.2) were HGRF at month 57, and 15% (95% CI 6.1-27.8) of patients with high-grade Ta/T1 were HGRF at month 57. Kaplan-Meier-estimated HGRF survival at 57 months was 13% (95% CI 6.9-21.5) and 33% (95% CI 19.5-46.6) in the CIS and Ta/T1 cohorts, respectively. Cystectomy-free survival at month 60 was 49% (95% CI 40.0-57.1): 43% (95% CI 32.2-53.7) in the CIS cohort and 59% (95% CI 43.1-71.4) in the Ta/T1 cohort. Overall survival at 60 months was 80% (71.0, 86.0): 76% (64.6-84.5) and 86% (70.9-93.5) in the CIS and Ta/T1 cohorts, respectively. Only 5 patients (4 with CIS and 1 with Ta/T1) experienced clinical progression to muscle-invasive disease. CONCLUSIONS: At 60 months, nadofaragene firadenovec-vncg allowed bladder preservation in nearly half of the patients and proved to be a safe option for BCG-unresponsive nonmuscle-invasive bladder cancer.


Asunto(s)
Vacuna BCG , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/terapia , Neoplasias de la Vejiga Urinaria/mortalidad , Masculino , Femenino , Vacuna BCG/administración & dosificación , Vacuna BCG/uso terapéutico , Administración Intravesical , Estudios de Seguimiento , Anciano , Persona de Mediana Edad , Carcinoma in Situ/patología , Carcinoma in Situ/terapia , Carcinoma in Situ/tratamiento farmacológico , Invasividad Neoplásica , Resultado del Tratamiento , Adenoviridae/genética , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/uso terapéutico , Anciano de 80 o más Años
10.
Cytotherapy ; 26(9): 1084-1094, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38661611

RESUMEN

BACKGROUND AIMS: Chimeric antigen receptor (CAR) T-cell products are commonly generated using lentiviral vector (LV) transduction. Optimal final formulation buffer (FFB) supporting LV stability during cryostorage is crucial for cost-effective manufacturing. METHODS: To identify the ideal LV FFB composition for ex vivo CAR-T production, primary human T cells were transduced with vesicular stomatitis virus G-protein (VSV-G) -pseudotyped LVs (encoding a reporter gene or an anti-CD19-CAR). The formulations included phosphate-buffered saline (PBS), HEPES, or X-VIVOTM 15, and stabilizing excipients. The functional and viral particle titers and vector copy number were measured after LV cryopreservation and up to 24 h post-thaw incubation. CAR-Ts were produced with LVs in selected FFBs, and the resulting cells were characterized. RESULTS: Post-cryopreservation, HEPES-based FFBs provided higher LV functional titers than PBS and X-VIVOTM 15, and 10% trehalose-20 mM MgCl2 improved LV transduction efficiency in PBS and 50 mM HEPES. Thawed vectors remained stable at +4°C, while a ≤ 25% median decrease in the functional titer occurred during 24 h at room temperature. Tested excipients did not enhance LV post-thaw stability. CAR-Ts produced using LVs cryopreserved in 10% trehalose- or sucrose-20 mM MgCl2 in 50 mM HEPES showed comparable transduction rates, cell yield, viability, phenotype, and in vitro functionality. CONCLUSION: A buffer consisting of 10% trehalose-20 mM MgCl2 in 50 mM HEPES provided a feasible FFB to cryopreserve a VSV-G -pseudotyped LV for CAR-T-cell production. The LVs remained relatively stable for at least 24 h post-thaw, even at ambient temperatures. This study provides insights into process development, showing LV formulation data generated using the relevant target cell type for CAR-T-cell manufacturing.


Asunto(s)
Vectores Genéticos , Lentivirus , Receptores Quiméricos de Antígenos , Linfocitos T , Transducción Genética , Humanos , Lentivirus/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Transducción Genética/métodos , Vectores Genéticos/genética , Criopreservación/métodos , Inmunoterapia Adoptiva/métodos , Antígenos CD19
11.
Arterioscler Thromb Vasc Biol ; 43(6): 836-851, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37128915

RESUMEN

Peripheral artery disease (PAD) is a vascular disorder caused by occlusive atherosclerosis, which commonly impairs blood flow to the lower extremities. The prevalence of PAD is increasing globally with >200 million people affected. PAD remains a growing global health problem as the population continues to age and diabetes incidence grows. Many patients with PAD, most notably those with critical limb ischemia, fail attempts at surgical and percutaneous intervention to improve blood flow and are at risk of amputation. Gene therapy provides an opportunity to change the clinical course of PAD in these patients via strategies that increase vascular supply through angiogenesis and arteriogenesis improving muscle perfusion and function in ischemic legs. This article discusses gene therapy approaches in the context of PAD, both intermittent claudication and critical limb ischemia, and the promise of adeno-associated virus-based strategies delivering not just VEGFs (vascular endothelial growth factors) but a range of other mediators as potential new therapeutics. We also highlight challenges and failures in the clinical translation of gene therapy for PAD and how at least some of these obstacles may be overcome using adeno-associated virus.


Asunto(s)
Dependovirus , Enfermedad Arterial Periférica , Humanos , Dependovirus/genética , Isquemia Crónica que Amenaza las Extremidades , Enfermedad Arterial Periférica/genética , Enfermedad Arterial Periférica/terapia , Enfermedad Arterial Periférica/metabolismo , Claudicación Intermitente/terapia , Extremidad Inferior , Isquemia/genética , Isquemia/terapia , Isquemia/metabolismo
12.
Arterioscler Thromb Vasc Biol ; 43(1): e46-e61, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36384268

RESUMEN

BACKGROUND: Diabetes is a major risk factor for peripheral arterial disease. Clinical and preclinical studies suggest an impaired collateral remodeling and angiogenesis in response to atherosclerotic arterial occlusion in diabetic conditions, although the underlying mechanisms are poorly understood. OBJECTIVE: To clarify the cellular and molecular mechanisms underlying impaired postischemic adaptive vascular responses and to evaluate rHDL (reconstituted HDL)-ApoA-I nanotherapy to rescue the defect in type 2 diabetic mouse model of hindlimb ischemia. METHODS AND RESULTS: Hindlimb ischemia was induced by unilateral femoral artery ligation. Collateral and capillary parameters together with blood flow recovery were analyzed from normoxic adductor and ischemic gastrocnemius muscles, respectively, at day 3 and 7 post-ligation. In response to femoral artery ligation, collateral lumen area was significantly reduced in normoxic adductor muscles. Distally, ischemic gastrocnemius muscles displayed impaired perfusion recovery and angiogenesis paralleled with persistent inflammation. Muscle-specific mRNA sequencing revealed differential expression of genes critical for smooth muscle proliferation and sprouting angiogenesis in normoxic adductor and ischemic gastrocnemius, respectively, at day 7 post-ligation. Genes typical for macrophage (Mϕ) subsets were differentially expressed across both muscle types. Cell-specific gene expression, flow cytometry, and immunohistochemistry revealed persistent IFN-I response gene upregulation in arterial endothelial cells, ECs and Mϕs from T2DM mice associated with impaired collateral remodeling, angiogenesis and perfusion recovery. Furthermore, rHDL nanotherapy rescued impaired collateral remodeling and angiogenesis through dampening EC and Mϕ inflammation in T2DM mice. CONCLUSIONS: Our results suggest that an impaired collateral remodeling and sprouting angiogenesis in T2DM mice is associated with persistent IFN-I response in ECs and Mϕs. Dampening persistent inflammation and skewing ECs and Mϕ phenotype toward less inflammatory ones using rHDL nanotherapy may serve as a potential therapeutic target for T2DM peripheral arterial disease.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Enfermedad Arterial Periférica , Ratones , Animales , Neovascularización Fisiológica , Células Endoteliales/metabolismo , Apolipoproteína A-I/metabolismo , Macrófagos/metabolismo , Isquemia , Músculo Esquelético/irrigación sanguínea , Arteria Femoral/metabolismo , Diabetes Mellitus Tipo 2/genética , Inflamación/metabolismo , Enfermedad Arterial Periférica/metabolismo , Fenotipo , Miembro Posterior/irrigación sanguínea , Ratones Endogámicos C57BL , Circulación Colateral
13.
Nature ; 558(7709): 301-306, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29875409

RESUMEN

Oxidized phospholipids (OxPL) are ubiquitous, are formed in many inflammatory tissues, including atherosclerotic lesions, and frequently mediate proinflammatory changes 1 . Because OxPL are mostly the products of non-enzymatic lipid peroxidation, mechanisms to specifically neutralize them are unavailable and their roles in vivo are largely unknown. We previously cloned the IgM natural antibody E06, which binds to the phosphocholine headgroup of OxPL, and blocks the uptake of oxidized low-density lipoprotein (OxLDL) by macrophages and inhibits the proinflammatory properties of OxPL2-4. Here, to determine the role of OxPL in vivo in the context of atherogenesis, we generated transgenic mice in the Ldlr-/- background that expressed a single-chain variable fragment of E06 (E06-scFv) using the Apoe promoter. E06-scFv was secreted into the plasma from the liver and macrophages, and achieved sufficient plasma levels to inhibit in vivo macrophage uptake of OxLDL and to prevent OxPL-induced inflammatory signalling. Compared to Ldlr-/- mice, Ldlr -/- E06-scFv mice had 57-28% less atherosclerosis after 4, 7 and even 12 months of 1% high-cholesterol diet. Echocardiographic and histologic evaluation of the aortic valves demonstrated that E06-scFv ameliorated the development of aortic valve gradients and decreased aortic valve calcification. Both cholesterol accumulation and in vivo uptake of OxLDL were decreased in peritoneal macrophages, and both peritoneal and aortic macrophages had a decreased inflammatory phenotype. Serum amyloid A was decreased by 32%, indicating decreased systemic inflammation, and hepatic steatosis and inflammation were also decreased. Finally, the E06-scFv prolonged life as measured over 15 months. Because the E06-scFv lacks the functional effects of an intact antibody other than the ability to bind OxPL and inhibit OxLDL uptake in macrophages, these data support a major proatherogenic role of OxLDL and demonstrate that OxPL are proinflammatory and proatherogenic, which E06 counteracts in vivo. These studies suggest that therapies inactivating OxPL may be beneficial for reducing generalized inflammation, including the progression of atherosclerosis, aortic stenosis and hepatic steatosis.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Hipercolesterolemia/metabolismo , Inflamación/metabolismo , Fosfolípidos/antagonistas & inhibidores , Fosfolípidos/metabolismo , Animales , Estenosis de la Válvula Aórtica/tratamiento farmacológico , Estenosis de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/patología , Apoptosis , Aterosclerosis/inducido químicamente , Aterosclerosis/genética , Colesterol/administración & dosificación , Colesterol/farmacología , Progresión de la Enfermedad , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Hígado Graso/patología , Femenino , Hipercolesterolemia/patología , Inmunoglobulina M/genética , Inmunoglobulina M/inmunología , Inmunoglobulina M/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/patología , Lipoproteínas LDL/metabolismo , Macrófagos Peritoneales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oxidación-Reducción , Fosfolípidos/química , Fosfolípidos/inmunología , Fosforilcolina/inmunología , Receptores de LDL/deficiencia , Receptores de LDL/genética , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/uso terapéutico
14.
Nature ; 561(7724): E43, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30013121

RESUMEN

In this Letter, affiliation number 1 was originally missing from the HTML; the affiliations were missing for author Ming-Yow Hung in the HTML; and the Fig. 4 legend erroneously referred to panels a-h, instead of a-g. These errors have been corrected online.

15.
Eur Heart J ; 44(14): 1216-1230, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-36478058

RESUMEN

The advent of single-cell biology opens a new chapter for understanding human biological processes and for diagnosing, monitoring, and treating disease. This revolution now reaches the field of cardiovascular disease (CVD). New technologies to interrogate CVD samples at single-cell resolution are allowing the identification of novel cell communities that are important in shaping disease development and direct towards new therapeutic strategies. These approaches have begun to revolutionize atherosclerosis pathology and redraw our understanding of disease development. This review discusses the state-of-the-art of single-cell analysis of atherosclerotic plaques, with a particular focus on human lesions, and presents the current resolution of cellular subpopulations and their heterogeneity and plasticity in relation to clinically relevant features. Opportunities and pitfalls of current technologies as well as the clinical impact of single-cell technologies in CVD patient care are highlighted, advocating for multidisciplinary and international collaborative efforts to join the cellular dots of CVD.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Placa Aterosclerótica , Humanos , Aterosclerosis/patología , Placa Aterosclerótica/patología
16.
Alzheimers Dement ; 20(2): 954-974, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37828821

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) is a neurodegenerative disease and the main cause of dementia in the elderly. AD pathology is characterized by accumulation of microglia around the beta-amyloid (Aß) plaques which assumes disease-specific transcriptional signatures, as for the disease-associated microglia (DAM). However, the regulators of microglial phagocytosis are still unknown. METHODS: We isolated Aß-laden microglia from the brain of 5xFAD mice for RNA sequencing to characterize the transcriptional signature in phagocytic microglia and to identify the key non-coding RNAs capable of regulating microglial phagocytosis. Through spatial sequencing, we show the transcriptional changes of microglia in the AD mouse brain in relation to Aß proximity. RESULTS: Finally, we show that phagocytic messenger RNAs are regulated by miR-7a-5p, miR-29a-3p and miR-146a-5p microRNAs and segregate the DAM population into phagocytic and non-phagocytic states. DISCUSSION: Our study pinpoints key regulators of microglial Aß clearing capacity suggesting new targets for future therapeutic approaches.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Enfermedades Neurodegenerativas , Humanos , Ratones , Animales , Anciano , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Microglía/patología , Enfermedades Neurodegenerativas/patología , Péptidos beta-Amiloides , MicroARNs/genética , Ratones Transgénicos , Modelos Animales de Enfermedad
18.
Nucleic Acids Res ; 49(14): 8078-8096, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34320216

RESUMEN

Super-enhancers are clusters of enhancers associated with cell lineage. They can be powerful gene-regulators and may be useful in cell-type specific viral-vector development. Here, we have screened for endothelial super-enhancers and identified an enhancer from within a cluster that conferred 5-70-fold increase in transgene expression. Importantly, CRISPR/Cas9 deletion of enhancers demonstrated regulation of ADAMTS18, corresponding to evidence of chromatin contacts between these genomic regions. Cell division-related pathways were primarily affected by the enhancer deletions, which correlated with significant reduction in cell proliferation. Furthermore, we observed changes in angiogenesis-related genes consistent with the endothelial specificity of this SE. Indeed, deletion of the enhancers affected tube formation, resulting in reduced or shortened sprouts. The super-enhancer angiogenic role is at least partly due to its regulation of ADAMTS18, as siRNA knockdown of ADAMTS18 resulted in significantly shortened endothelial sprouts. Hence, functional characterization of a novel endothelial super-enhancer has revealed substantial downstream effects from single enhancer deletions and led to the discovery of the cis-target gene ADAMTS18 and its role in endothelial function.


Asunto(s)
Proteínas ADAMTS/genética , Cromatina/genética , Elementos de Facilitación Genéticos/genética , Neovascularización Fisiológica/genética , Sistemas CRISPR-Cas/genética , División Celular/genética , Linaje de la Célula/genética , Células Endoteliales/metabolismo , Humanos , ARN Interferente Pequeño/genética , Transducción de Señal/genética
19.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003709

RESUMEN

Adenoviral vectors are commonly used in clinical gene therapy. Apart from oncolytic adenoviruses, vector replication is highly undesired as it may pose a safety risk for the treated patient. Thus, careful monitoring for the formation of replication-competent adenoviruses (RCA) during vector manufacturing is required. To render adenoviruses replication deficient, their genomic E1 region is deleted. However, it has been known for a long time that during their propagation, some viruses will regain their replication capability by recombination in production cells, most commonly HEK293. Recently developed RCA assays have revealed that many clinical batches contain more RCA than previously assumed and allowed by regulatory authorities. The clinical significance of the higher RCA content has yet to be thoroughly evaluated. In this review, we summarize the biology of adenovirus vectors, their manufacturing methods, and the origins of RCA formed during HEK293-based vector production. Lastly, we share our experience using minimally RCA-positive serotype 5 adenoviral vectors based on observations from our clinical cardiovascular gene therapy studies.


Asunto(s)
Adenoviridae , Vectores Genéticos , Humanos , Adenoviridae/genética , Células HEK293 , Vectores Genéticos/genética , Terapia Genética/efectos adversos , Terapia Genética/métodos , Replicación Viral/genética
20.
Gene Ther ; 29(5): 289-293, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34593990

RESUMEN

In phase I KAT301 trial, intramyocardial adenovirus-mediated vascular endothelial growth factor -DΔNΔC (AdVEGF-D) gene therapy (GT) resulted in a significant improvement in myocardial perfusion reserve and relieved symptoms in refractory angina patients at 1-year follow-up without major safety concerns. We investigated the long-term safety and efficacy of AdVEGF-D GT. 30 patients (24 in VEGF-D group and 6 blinded, randomized controls) were followed for 8.2 years (range 6.3-10.4 years). Patients were interviewed for the current severity of symptoms (Canadian Cardiovascular Society class, CCS) and perceived benefit from GT. Medical records were reviewed to assess the incidence of major cardiovascular adverse event (MACE) and other predefined safety endpoints. MACE occurred in 15 patients in VEGF-D group and in five patients in control group (21.5 vs. 24.9 per 100 patient-years; hazard ratio 0.97; 95% confidence interval 0.36-2.63; P = 0.95). Mortality and new-onset comorbidity were similar between the groups. Angina symptoms (CCS) were less severe compared to baseline in VEGF-D group (1.9 vs. 2.9; P = 0.006) but not in control group (2.2 vs. 2.6; P = 0.414). Our study indicates that intramyocardial AdVEGF-D GT is safe in the long-term. In addition, the relief of symptoms remained significant during the follow-up.


Asunto(s)
Infecciones por Adenoviridae , Adenoviridae , Adenoviridae/genética , Angina de Pecho/genética , Angina de Pecho/terapia , Canadá , Estudios de Seguimiento , Técnicas de Transferencia de Gen , Terapia Genética/efectos adversos , Terapia Genética/métodos , Humanos , Resultado del Tratamiento , Factor A de Crecimiento Endotelial Vascular/genética , Factor D de Crecimiento Endotelial Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA