Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 931
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(17): e2302448120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37068250

RESUMEN

The tropane alkaloids (TAs) cocaine and hyoscyamine have been used medicinally for thousands of years. To understand the evolutionary origins and trajectories of serial biosynthetic enzymes of TAs and especially the characteristic tropane skeletons, we generated the chromosome-level genome assemblies of cocaine-producing Erythroxylum novogranatense (Erythroxylaceae, rosids clade) and hyoscyamine-producing Anisodus acutangulus (Solanaceae, asterids clade). Comparative genomic and phylogenetic analysis suggested that the lack of spermidine synthase/N-methyltransferase (EnSPMT1) in ancestral asterids species contributed to the divergence of polyamine (spermidine or putrescine) methylation in cocaine and hyoscyamine biosynthesis. Molecular docking analysis and key site mutation experiments suggested that ecgonone synthases CYP81AN15 and CYP82M3 adopt different active-site architectures to biosynthesize the same product ecgonone from the same substrate in Erythroxylaceae and Solanaceae. Further synteny analysis showed different evolutionary origins and trajectories of CYP81AN15 and CYP82M3, particularly the emergence of CYP81AN15 through the neofunctionalization of ancient tandem duplication genes. The combination of structural biology and comparative genomic analysis revealed that ecgonone methyltransferase, which is responsible for the biosynthesis of characteristic 2-substituted carboxymethyl group in cocaine, evolved from the tandem copies of salicylic acid methyltransferase by the mutations of critical E216 and S153 residues. Overall, we provided strong evidence for the independent origins of serial TA biosynthetic enzymes on the genomic and structural level, underlying the chemotypic convergence of TAs in phylogenetically distant species.


Asunto(s)
Cocaína , Hiosciamina , Solanaceae , Filogenia , Simulación del Acoplamiento Molecular , Tropanos , Solanaceae/genética , Genómica , Metiltransferasas/genética
2.
J Proteome Res ; 23(6): 2100-2111, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38634357

RESUMEN

Gut microbiota-derived microbial compounds may link to the pathogenesis of colorectal cancer (CRC). However, the role of the host-microbiome in the incidence and progression of CRC remains elusive. We performed 16S rRNA sequencing, metabolomics, and proteomic studies on samples from 85 CRC patients who underwent colonoscopy examination and found two distinct changed patterns of microbiome in CRC patients. The relative abundances of Catabacter and Mogibacterium continuously increased from intramucosal carcinoma to advanced stages, whereas Clostridium, Anaerostipes, Vibrio, Flavonifractor, Holdemanella, and Hungatella were significantly altered only in intermediate lesions. Fecal metabolomics analysis exhibited consistent increases in bile acids, indoles, and urobilin as well as a decrease in heme. Serum metabolomics uncovered the highest levels of bilin, glycerides, and nucleosides together with the lowest levels of bile acids and amino acids in the stage of intermediate lesions. Three fecal and one serum dipeptides were elevated in the intermediate lesions. Proteomics analysis of colorectal tissues showed that oxidation and autophagy through the PI3K/Akt-mTOR signaling pathway contribute to the development of CRC. Diagnostic analysis showed multiomics features have good predictive capability, with AUC greater than 0.85. Our overall findings revealed new candidate biomarkers for CRC, with potentially significant diagnostic and prognostic capabilities.


Asunto(s)
Neoplasias Colorrectales , Heces , Microbioma Gastrointestinal , Metabolómica , Proteómica , ARN Ribosómico 16S , Humanos , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Proteómica/métodos , Heces/microbiología , Heces/química , Metabolómica/métodos , Masculino , ARN Ribosómico 16S/genética , Femenino , Persona de Mediana Edad , Anciano , Transducción de Señal , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/sangre , Multiómica
3.
Analyst ; 149(3): 751-760, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38194259

RESUMEN

Polyunsaturated fatty acids (PUFAs), such as arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), play an important role in the nutritional value of milk lipids. However, a comprehensive analysis of PUFAs and their esters in milk is still scarce. In this study, we developed a novel pseudotargeted lipidomics approach, named SpecLipIDA, for determining PUFA lipids in milk. Triglycerides (TGs) and phospholipids (PLs) were separated using NH2 cartridges, and mass spectrometry data in the information-dependent acquisition (IDA) mode were preprocessed by MS-DIAL, leading to improved identification in subsequent targeted analysis. The target matching algorithm, based on specific lipid cleavage patterns, demonstrated enhanced identification of PUFA lipids compared to the lipid annotations provided by MS-DIAL and GNPS. The approach was applied to identify PUFA lipids in various milk samples, resulting in the detection of a total of 115 PUFA lipids. The results revealed distinct differences in PUFA lipids among different samples, with 44 PUFA lipids significantly contributing to these differences. Our study indicated that SpecLipIDA is an efficient method for rapidly and specifically screening PUFA lipids.


Asunto(s)
Lipidómica , Leche , Animales , Ácidos Grasos Insaturados , Fosfolípidos , Ácidos Docosahexaenoicos , Ácidos Grasos
4.
Inorg Chem ; 63(2): 1388-1394, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38166363

RESUMEN

By variation of the amount of GeO2, two organic-inorganic hybrid germanoniobate frameworks with 6-connected pcu and 10-connected bct topologies were constructed from peanut-shaped {α-Ge12Nb38} and {ß-Ge12Nb38} clusters, respectively. The {α-Ge12Nb38} and {ß-Ge12Nb38} clusters contain the most Ge centers of germanoniobates reported so far. The compounds exhibit proton conduction properties with a conductivity of 3.04 × 10-4 S·cm-3 for 1 and 1.62 × 10-4 S·cm-3 for 2 at 85 °C and 98% RH. The water vapor adsorption capacities for 1 and 2 are 5.86 and 4.40 mmol·g-1, respectively.

5.
BMC Gastroenterol ; 24(1): 83, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395771

RESUMEN

OBJECTIVE: Acute mesenteric vein thrombosis (AMVT) is an acute abdominal disease with onset, rapid progression, and extensive intestinal necrosis that requires immediate surgical resection. The purpose of this study was to determine the risk factors for nosocomial intestinal resection in patients with AMVT. METHODS: We retrospectively analysed 64 patients with AMVT diagnosed by CTA at the Affiliated Hospital of Kunming University of Science and Technology from January 2013 to December 2021. We compared patients who underwent intestinal resection (42 patients) with those who did not undergo intestinal resection (22 patients). The area under the ROC curve was evaluated, and a forest map was drawn. RESULTS: Among the 64 patients, 6 (9.38%) had a fever, 60 (93.75%) had abdominal pain, 9 (14.06%) had a history of diabetes, 8 (12.5%) had a history of deep vein thrombosis (DVT), and 25 (39.06%) had ascites suggested by B ultrasound or CT after admission. The mean age of all patients was 49.86 ± 16.25 years. The mean age of the patients in the enterectomy group was 47.71 ± 16.20 years. The mean age of the patients in the conservative treatment group (without enterectomy) was 53.95 ± 15.90 years. In the univariate analysis, there were statistically significant differences in leukocyte count (P = 0.003), neutrophil count (P = 0.001), AST (P = 0.048), total bilirubin (P = 0.047), fibrinogen (P = 0.022) and DD2 (P = 0.024) between the two groups. The multivariate logistic regression analysis showed that admission white blood cell count (OR = 1.153, 95% CI: 1.039-1.280, P = 0.007) was an independent risk factor for intestinal resection in patients with AMVT. The ROC curve showed that the white blood cell count (AUC = 0.759 95% CI: 0.620-0.897; P = 0.001; optimal threshold: 7.815; sensitivity: 0.881; specificity: 0.636) had good predictive value for emergency enterectomy for AMVT. CONCLUSIONS: Among patients with AMVT, patients with a higher white blood cell count at admission were more likely to have intestinal necrosis and require emergency enterectomy. This study is helpful for clinicians to accurately determine whether emergency intestinal resection is needed in patients with AMVT after admission, prevent further intestinal necrosis, and improve the prognosis of patients.


Asunto(s)
Isquemia Mesentérica , Trombosis , Humanos , Adulto , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Venas Mesentéricas/cirugía , Enfermedad Aguda , Pronóstico , Isquemia Mesentérica/cirugía , Recuento de Leucocitos , Trombosis/complicaciones , Necrosis , Curva ROC
6.
Anal Bioanal Chem ; 416(18): 4111-4122, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38772972

RESUMEN

Branched fatty acid esters of hydroxy fatty acids (FAHFAs) represent trace lipids with significant natural biological functions. While exogenous FAHFAs have been extensively studied, research on FAHFAs in milk remains limited, constraining our grasp of their nutritional roles. This study introduces a non-targeted mass spectrometry approach combined with chemical networking of spectral fragmentation patterns to uncover FAHFAs. Through meticulous sample handling and comparisons of various data acquisition and processing modes, we validate the method's superiority, identifying twice as many FAHFAs compared to alternative techniques. This validated method was then applied to different milk samples, revealing 45 chemical signals associated with known and potential FAHFAs, alongside findings of 66 ceramide/hexosylceramide (Cer/HexCer), 48 phosphatidyl ethanolamine/lyso phosphatidyl ethanolamine (PE/LPE), 21 phosphatidylcholine/lysophosphatidylcholine (PC/LPC), 16 phosphatidylinositol (PI), 7 phosphatidylserine (PS), and 11 sphingomyelin (SM) compounds. This study expands our understanding of the FAHFA family in milk and provides a fast and convenient method for identifying FAHFAs.


Asunto(s)
Ésteres , Ácidos Grasos , Espectrometría de Masas , Leche , Animales , Leche/química , Ácidos Grasos/análisis , Ácidos Grasos/química , Ésteres/análisis , Ésteres/química , Espectrometría de Masas/métodos
7.
Ecotoxicol Environ Saf ; 283: 116786, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39083869

RESUMEN

Cd ions are absorbed and transported from the soil by crop roots, which are the first organ to be exposed to Cd. This results in an increase in cadmium ions in crops, significantly affecting crop growth and yield. Exogenous melatonin (MT) can help reduce cadmium (Cd) stress in cotton, but the specific contribution of roots to this process remains unclear. In order to address this knowledge gap, an in-situ root phenotyping study was conducted to investigate the the phenotype and lifespan of roots under cadmium stress (Cd) and melatonin treatment (Cd + MT). The results showed that MT alleviated the decreases in plant height, leaf area, SPAD value, stem diameter, stomatal conductance and net photosynthetic rate under Cd stress, which further promoted the biomass accumulation in various cotton organs. What is more, the Cd + MT treatment increased root volume, surface area, and length under Cd stress by 25.63 %, 10.58 %, and 21.89 %, respectively, compared with Cd treatment. Interestingly, compared to Cd treatment, Cd + MT treatment also significantly extended the lifespan of roots and root hairs by 6.68 days and 2.18 days, respectively. In addition, Cd + MT treatment reduced the transport of Cd from roots to shoots, particularly to bolls, and decreased the Cd bioconcentration factor in bolls by 61.17 %, compared to Cd treatment. In conclusion, these findings show that applying MT externally helps reduce Cd stress by delaying root senescence, promoting root development and regulating Cd transport. This method can be an effective approach to managing Cd stress in cotton.

8.
J Integr Plant Biol ; 66(6): 1158-1169, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38517054

RESUMEN

Camptothecin is a complex monoterpenoid indole alkaloid with remarkable antitumor activity. Given that two C-10 modified camptothecin derivatives, topotecan and irinotecan, have been approved as potent anticancer agents, there is a critical need for methods to access other aromatic ring-functionalized congeners (e.g., C-9, C-10, etc.). However, contemporary methods for chemical oxidation are generally harsh and low-yielding when applied to the camptothecin scaffold, thereby limiting the development of modified derivatives. Reported herein, we have identified four tailoring enzymes responsible for C-9 modifications of camptothecin from Nothapodytes tomentosa, via metabolomic and transcriptomic analysis. These consist of a cytochrome P450 (NtCPT9H) which catalyzes the regioselective oxidation of camptothecin to 9-hydroxycamptothecin, as well as two methyltransferases (NtOMT1/2, converting 9-hydroxycamptothecin to 9-methoxycamptothecin), and a uridine diphosphate-glycosyltransferase (NtUGT5, decorating 9-hydroxycamptothecin to 9-ß-D-glucosyloxycamptothecin). Importantly, the critical residues that contribute to the specific catalytic activity of NtCPT9H have been elucidated through molecular docking and mutagenesis experiments. This work provides a genetic basis for producing camptothecin derivatives through metabolic engineering. This will hasten the discovery of novel C-9 modified camptothecin derivatives, with profound implications for pharmaceutical manufacture.


Asunto(s)
Camptotecina , Camptotecina/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo
9.
Compr Rev Food Sci Food Saf ; 23(3): e13332, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578167

RESUMEN

Antarctic krill oil (AKO) is highly sought after by consumers and the food industry due to its richness in a variety of nutrients and physiological activities. However, current extraction methods are not sufficient to better extract AKO and its nutrients, and AKO is susceptible to lipid oxidation during processing and storage, leading to nutrient loss and the formation of off-flavors and toxic compounds. The development of various extraction methods and encapsulation systems for AKO to improve oil yield, nutritional value, antioxidant capacity, and bioavailability has become a research hotspot. This review summarizes the research progress of AKO from extraction to encapsulation system construction. The AKO extraction mechanism, technical parameters, oil yield and composition of solvent extraction, aqueous enzymatic extraction, supercritical/subcritical extraction, and three-liquid-phase salting-out extraction system are described in detail. The principles, choice of emulsifier/wall materials, preparation methods, advantages and disadvantages of four common encapsulation systems for AKO, namely micro/nanoemulsions, microcapsules, liposomes and nanostructured lipid carriers, are summarized. These four encapsulation systems are characterized by high encapsulation efficiency, low production cost, high bioavailability and high antioxidant capacity. Depending on the unique advantages and conditions of different encapsulation methods, as well as consumer demand for health and nutrition, different products can be developed. However, existing AKO encapsulation systems lack relevant studies on digestive absorption and targeted release, and the single product category of commercially available products limits consumer choice. In conjunction with clinical studies of AKO encapsulation systems, the development of encapsulation systems for special populations should be a future research direction.


Asunto(s)
Antioxidantes , Euphausiacea , Animales , Estado Nutricional , Valor Nutritivo , Lípidos
10.
Int Wound J ; 21(4): e14718, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38571455

RESUMEN

This study comprehensively compared the effects of laparoscopic and open radical cystectomies on postoperative wound infections and complications in patients with bladder cancer. We conducted a systematic search for relevant studies in PubMed, Embase, Google Scholar, Cochrane Library, China National Knowledge Infrastructure, and Wanfang databases, from database inception to October 2023. Two researchers independently screened the literature, extracted data, and assessed the quality based on the inclusion and exclusion criteria. Data analysis was performed using Stata 17.0 software. Overall, 16 studies involving 1427 patients with bladder cancer were included. The analysis revealed that, compared with open radical cystectomy, laparoscopic radical cystectomy significantly reduced the incidence of wound infections (odds ratio [OR] = 0.38, 95% confidence interval [CI]: 0.23-0.64, p < 0.001) and complications (OR = 0.35, 95%CI: 0.26-0.47, p < 0.001) and significantly shortened the hospital stay duration (standardised mean difference [SMD] = -1.85, 95%CI: -2.34 to -1.36, p < 0.001). Thus, this study determined that laparoscopic radical cystectomy for the treatment of bladder cancer effectively reduced the occurrence of wound infections and complications, and significantly shortened the patient's hospital stay, demonstrating notable therapeutic effectiveness worthy of clinical application.


Asunto(s)
Cistectomía , Laparoscopía , Infección de la Herida Quirúrgica , Neoplasias de la Vejiga Urinaria , Humanos , Infección de la Herida Quirúrgica/etiología , Infección de la Herida Quirúrgica/epidemiología , Neoplasias de la Vejiga Urinaria/cirugía , Laparoscopía/métodos , Laparoscopía/efectos adversos , Cistectomía/efectos adversos , Cistectomía/métodos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adulto , Tiempo de Internación/estadística & datos numéricos , Anciano de 80 o más Años
11.
Anal Chem ; 95(51): 18793-18802, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38095040

RESUMEN

Metabolomics and proteomics offer significant advantages in understanding biological mechanisms at two hierarchical levels. However, conventional single omics analysis faces challenges due to the high demand for specimens and the complexity of intrinsic associations. To obtain comprehensive and accurate system biological information, we developed a multiomics analytical method called Windows Scanning Multiomics (WSM). In this method, we performed simultaneous extraction of metabolites and proteins from the same sample, resulting in a 10% increase in the coverage of the identified biomolecules. Both metabolomics and proteomics analyses were conducted by using ultrahigh-performance liquid chromatography mass spectrometry (UPLC-MS), eliminating the need for instrument conversions. Additionally, we designed an R-based program (WSM.R) to integrate mathematical and biological correlations between metabolites and proteins into a correlation network. The network created from simultaneously extracted biomolecules was more focused and comprehensive compared to those from separate extractions. Notably, we excluded six pairs of false-positive relationships between metabolites and proteins in the network established using simultaneously extracted biomolecules. In conclusion, this study introduces a novel approach for multiomics analysis and data processing that greatly aids in bioinformation mining from multiomics results. This method is poised to play an indispensable role in systems biology research.


Asunto(s)
Multiómica , Proteómica , Proteómica/métodos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Metabolómica/métodos
12.
New Phytol ; 238(2): 567-583, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36651017

RESUMEN

Mistletoes play important roles in biogeochemical cycles. Although many studies have compared nutrient concentrations between mistletoes and their hosts, no general patterns have been found and the nutrient uptake mechanisms in mistletoes have not been fully resolved. To address the water and nutrient relations in mistletoes compared with their hosts, we measured 11 nutrient elements, two isotope ratios and two leaf morphological traits for 11 mistletoe and 104 host species from four sites across a large environmental gradient in southwest China. Mistletoes had significantly higher phosphorus, potassium, and boron concentrations, nitrogen isotope ratio, and lower carbon isotope ratio (δ13 C) indicative of lower water-use efficiency than hosts, but other elements were similar to those in hosts. Sites explained most of the variation in the multidimensional trait space. With increasing host nitrogen concentration, both mistletoe δ13 C and the difference between mistletoe and host δ13 C increased, providing evidence to support the 'nitrogen parasitism hypothesis'. Host nutrient concentrations were the best predictors for that of the mistletoe nutrient elements in most cases. Our results highlight the important roles of environmental conditions and host nutrient status in determining mistletoe nutrient pools, which together explain their trophic interactions with hosts in subtropical and tropical ecosystems.


Asunto(s)
Muérdago , Ecosistema , Agua , Nitrógeno , Nutrientes
13.
New Phytol ; 237(4): 1242-1255, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36307967

RESUMEN

The hydraulic system of vascular plants and its integrity is essential for plant survival. To transport water under tension, the walls of xylem conduits must approximate rigid pipes. Against this expectation, conduit deformation has been reported in the leaves of a few species and hypothesized to function as a 'circuit breaker' against embolism. Experimental evidence is lacking, and its generality is unknown. We demonstrated the role of conduit deformation in protecting the upstream xylem from embolism through experiments on three species and surveyed a diverse selection of vascular plants for conduit deformation in leaves. Conduit deformation in minor veins occurred before embolism during slow dehydration. When leaves were exposed to transient increases in transpiration, conduit deformation was accompanied by large water potential differences from leaf to stem and minimal embolism in the upstream xylem. In the three species tested, collapsible vein endings provided clear protection of upstream xylem from embolism during transient increases in transpiration. We found conduit deformation in diverse vascular plants, including 11 eudicots, ginkgo, a cycad, a fern, a bamboo, and a grass species, but not in two bamboo and a palm species, demonstrating that the potential for 'circuit breaker' functionality may be widespread across vascular plants.


Asunto(s)
Tracheophyta , Agua , Hojas de la Planta , Xilema , Poaceae
14.
Plant Cell Environ ; 46(5): 1540-1561, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36760139

RESUMEN

A photochemical model of photosynthetic electron transport (PET) is needed to integrate photophysics, photochemistry, and biochemistry to determine redox conditions of electron carriers and enzymes for plant stress assessment and mechanistically link sun-induced chlorophyll fluorescence to carbon assimilation for remotely sensing photosynthesis. Towards this goal, we derived photochemical equations governing the states and redox reactions of complexes and electron carriers along the PET chain. These equations allow the redox conditions of the mobile plastoquinone pool and the cytochrome b6 f complex (Cyt) to be inferred with typical fluorometry. The equations agreed well with fluorometry measurements from diverse C3 /C4 species across environments in the relationship between the PET rate and fraction of open photosystem II reaction centres. We found the oxidation of plastoquinol by Cyt is the bottleneck of PET, and genetically improving the oxidation of plastoquinol by Cyt may enhance the efficiency of PET and photosynthesis across species. Redox reactions and photochemical and biochemical interactions are highly redundant in their complex controls of PET. Although individual reaction rate constants cannot be resolved, they appear in parameter groups which can be collectively inferred with fluorometry measurements for broad applications. The new photochemical model developed enables advances in different fronts of photosynthesis research.


Asunto(s)
Clorofila , Complejo de Proteína del Fotosistema I , Transporte de Electrón , Complejo de Proteína del Fotosistema I/metabolismo , Clorofila/química , Fotosíntesis , Oxidación-Reducción , Plastoquinona , Complejo de Citocromo b6f/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
15.
Plant Cell Environ ; 46(3): 736-746, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36564901

RESUMEN

Within vascular plants, the partitioning of hydraulic resistance along the soil-to-leaf continuum affects transpiration and its response to environmental conditions. In trees, the fractional contribution of leaf hydraulic resistance (Rleaf ) to total soil-to-leaf hydraulic resistance (Rtotal ), or fRleaf (=Rleaf /Rtotal ), is thought to be large, but this has not been tested comprehensively. We compiled a multibiome data set of fRleaf using new and previously published measurements of pressure differences within trees in situ. Across 80 samples, fRleaf averaged 0.51 (95% confidence interval [CI] = 0.46-0.57) and it declined with tree height. We also used the allometric relationship between field-based measurements of soil-to-leaf hydraulic conductance and laboratory-based measurements of leaf hydraulic conductance to compute the average fRleaf for 19 tree samples, which was 0.40 (95% CI = 0.29-0.56). The in situ technique produces a more accurate descriptor of fRleaf because it accounts for dynamic leaf hydraulic conductance. Both approaches demonstrate the outsized role of leaves in controlling tree hydrodynamics. A larger fRleaf may help stems from loss of hydraulic conductance. Thus, the decline in fRleaf with tree height would contribute to greater drought vulnerability in taller trees and potentially to their observed disproportionate drought mortality.


Asunto(s)
Suelo , Árboles , Árboles/fisiología , Agua/fisiología , Transpiración de Plantas/fisiología , Hojas de la Planta/fisiología
16.
Electrophoresis ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37909658

RESUMEN

Single-cell biophysical properties play a crucial role in regulating cellular physiological states and functions, demonstrating significant potential in the fields of life sciences and clinical diagnostics. Therefore, over the last few decades, researchers have developed various detection tools to explore the relationship between the biophysical changes of biological cells and human diseases. With the rapid advancement of modern microfabrication technology, microfluidic devices have quickly emerged as a promising platform for single-cell analysis offering advantages including high-throughput, exceptional precision, and ease of manipulation. Consequently, this paper provides an overview of the recent advances in microfluidic analysis and detection systems for single-cell biophysical properties and their applications in the field of cancer. The working principles and latest research progress of single-cell biophysical property detection are first analyzed, highlighting the significance of electrical and mechanical properties. The development of data acquisition and processing methods for real-time, high-throughput, and practical applications are then discussed. Furthermore, the differences in biophysical properties between tumor and normal cells are outlined, illustrating the potential for utilizing single-cell biophysical properties for tumor cell identification, classification, and drug response assessment. Lastly, we summarize the limitations of existing microfluidic analysis and detection systems in single-cell biophysical properties, while also pointing out the prospects and future directions of their applications in cancer diagnosis and treatment.

17.
Crit Rev Food Sci Nutr ; 63(27): 8478-8488, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35435783

RESUMEN

Sensory evaluation is a key component of food production strategy. The classical food sensory evaluation method is time-consuming, laborious, costly, and highly subjective. Since flavor (taste and smell), texture, and mouthfeel are all related to the chemical properties of food, there has been a growing interest in how they affect the senses of food. In the past decades, emerging metabolomics has received much attention in the field of sensory evaluation, because it not only offers a broad picture of chemical composition for sensory properties but also revealed their changes and functions in food proceeding. This article reviewed food chemicals regarding the flavor, smell, and texture of foods, and discussed the advantages and limitations of applying metabolomics approaches to sensory evaluation, including GC-MS, LC-MS, and NMR. Taken together, this review gives a comprehensive, critical overview of the current state, future challenges, and trends in metabolomics on food sensory properties.


Asunto(s)
Olfato , Gusto , Sensación , Alimentos , Percepción del Gusto , Metabolómica
18.
Crit Rev Food Sci Nutr ; : 1-13, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37140184

RESUMEN

As an emerging group of bioactive fatty acids, monomethyl branched-chain fatty acids (mmBCFAs) have sparked the interest of many researchers both domestically and internationally. In addition to documenting the importance of mmBCFAs for growth and development, there is increasing evidence that mmBCFAs are highly correlated with obesity and insulin resistance. According to previous pharmacological investigations, mmBCFAs also exhibit anti-inflammatory effects and anticancer properties. This review summarized the distribution of mmBCFAs, which are widely found in dairy products, ruminants, fish, and fermented foods. Besides, we discuss the biosynthesis pathway in different species and detection methods of mmBCFAs. With the hope to unveil their mechanisms of action, we recapitulated detailed the nutrition and health benefits of mmBCFAs. Furthermore, this study provides a thorough, critical overview of the current state of the art, upcoming difficulties, and trends in mmBCFAs.

19.
Inorg Chem ; 62(27): 10675-10683, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37381902

RESUMEN

A 3D Co(III)-complex hybrid polyoxoniobate framework Na10(H2O)36[Co2(phen)2(4,4'-bipy)(Nb6O19)2]·19H2O (1) has been constructed from [Co2(phen)2(4,4'-bipy)(Nb6O19)2]10- dimer units and 2D inorganic Na-O cluster layers. The Co(III) centers are coordinated with {Nb6O19}, 4,4'-bipy and phen simultaneously. The [Co2(phen)2(4,4'-bipy)(Nb6O19)2]10- fragments link the Na-O cluster layers to generate a 3D metal complex-modified hybrid polyoxoniobate framework with π-π interactions between phenanthroline rings. Compound 1 shows reversible thermochromic behavior resulting from electron transfer from {Nb6O19} to 4,4'-bipy and subsequent formation of radical products, which is first observed in polyoxoniobates. Furthermore, the compound exhibits stable nonvolatile storage behavior and rewritable resistive switching with a low switching voltage (1.12 V) and high current on/off ratio (1.18 × 103) along with stable cyclic performance during stability test for 200 cycles. Charge-transfer mechanism has been studied by analyzing the relationship between current and voltage in the process of resistance switching.

20.
Proc Natl Acad Sci U S A ; 117(52): 32989-32995, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33288692

RESUMEN

Tibet's ancient topography and its role in climatic and biotic evolution remain speculative due to a paucity of quantitative surface-height measurements through time and space, and sparse fossil records. However, newly discovered fossils from a present elevation of ∼4,850 m in central Tibet improve substantially our knowledge of the ancient Tibetan environment. The 70 plant fossil taxa so far recovered include the first occurrences of several modern Asian lineages and represent a Middle Eocene (∼47 Mya) humid subtropical ecosystem. The fossils not only record the diverse composition of the ancient Tibetan biota, but also allow us to constrain the Middle Eocene land surface height in central Tibet to ∼1,500 ± 900 m, and quantify the prevailing thermal and hydrological regime. This "Shangri-La"-like ecosystem experienced monsoon seasonality with a mean annual temperature of ∼19 °C, and frosts were rare. It contained few Gondwanan taxa, yet was compositionally similar to contemporaneous floras in both North America and Europe. Our discovery quantifies a key part of Tibetan Paleogene topography and climate, and highlights the importance of Tibet in regard to the origin of modern Asian plant species and the evolution of global biodiversity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA