Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Opt Express ; 26(21): 27381-27402, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30469808

RESUMEN

Realizing both high temporal and spatial resolution across a large volume is a key challenge for 3D fluorescent imaging. Towards achieving this objective, we introduce an interferometric multifocus microscopy (iMFM) system, a combination of multifocus microscopy (MFM) with two opposing objective lenses. We show that the proposed iMFM is capable of simultaneously producing multiple focal plane interferometry that provides axial super-resolution and hence isotropic 3D resolution with a single exposure. We design and simulate the iMFM microscope by employing two special diffractive optical elements. The point spread function of this new iMFM microscope is simulated and the image formation model is given. For reconstruction, we use the Richardson-Lucy deconvolution algorithm with total variation regularization for 3D extended object recovery, and a maximum likelihood estimator (MLE) for single molecule tracking. A method for determining an initial axial position of the molecule is also proposed to improve the convergence of the MLE. We demonstrate both theoretically and numerically that isotropic 3D nanoscopic localization accuracy is achievable with an axial imaging range of 2um when tracking a fluorescent molecule in three dimensions and that the diffraction limited axial resolution can be improved by 3-4 times in the single shot wide-field 3D extended object recovery. We believe that iMFM will be a useful tool in 3D dynamic event imaging that requires both high temporal and spatial resolution.

2.
Opt Express ; 22 Suppl 1: A132-43, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24921990

RESUMEN

Artificial lighting in office buildings typically requires 30% of the total energy consumption of the building, providing a substantial opportunity for energy savings. To reduce the energy consumed by indoor lighting, we propose a sensor-less light-emitting diode (LED) dimming system using daylight harvesting. In this study, we used light simulation software to quantify and visualize daylight, and analyzed the correlation between photovoltaic (PV) power generation and indoor illumination in an office with an integrated PV system. In addition, we calculated the distribution of daylight illumination into the office and dimming ratios for the individual control of LED lights. Also, we were able directly to use the electric power generated by PV system. As a result, power consumption for electric lighting was reduced by 40 - 70% depending on the season and the weather conditions. Thus, the dimming system proposed in this study can be used to control electric lighting to reduce energy use cost-effectively and simply.

3.
Sci Total Environ ; 857(Pt 2): 159520, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36265621

RESUMEN

The aim of this study was to analyze various sustainability strategies for phosphate and phosphorous fertilizer production systems from the perspective of their holistic impacts on water, energy, and CO2 emissions. The study was conducted using the Water-Energy-Food (WEF) Nexus Tool 2.0, adapted to include the phosphate industry (WEF-P tool). It assesses the scenarios based on priorities identified by the Moroccan phosphate industry, such as the environmental impact of transporting phosphate rock by train and phosphate slurry by pipeline and increased desalinated water use. Results show that each scenario's sustainability can be assessed in terms of phosphate production, processes, resource (water and energy) availability, and CO2 emissions in mining and manufacturing areas. The analytical methodology of the tool is based on an integrated supply chain and life cycle assessment, which includes the production flows linking mining phosphate and manufacturing phosphorous fertilizers and their water and energy supply systems. Field surveys were used to identify the supply chain and estimate the relationships between production and resource consumption in each process. The tool is a decision-support platform that produces sustainability indices for multiple scenarios of resource allocation (water and energy) and CO2 emissions, allowing stakeholders to compare potential outcomes and formulate decisions based on their understanding of the actual trade-offs involved.


Asunto(s)
Fertilizantes , Abastecimiento de Agua , Agua , Abastecimiento de Alimentos , Marruecos , Dióxido de Carbono , Fósforo , Fosfatos
4.
Appl Opt ; 51(33): 8052-6, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23207317

RESUMEN

In this article, we introduce a simple fabrication method for SiO(2)-based thin diffractive optical elements (DOEs) that uses the conventional processes widely used in the semiconductor industry. Photolithography and an inductively coupled plasma etching technique are easy and cost-effective methods for fabricating subnanometer-scale and thin DOEs with a refractive index of 1.45, based on SiO(2). After fabricating DOEs, we confirmed the shape of the output light emitted from the laser diode light source and applied to a light-emitting diode (LED) module. The results represent a new approach to mass-produce DOEs and realize a high-brightness LED module.

5.
RSC Adv ; 12(5): 2820-2829, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35425300

RESUMEN

Triboelectric nanogenerators (TENGs) based on ferroelectric organic materials have advantages of high flexibility, biocompatibility, controllable ferroelectric properties, etc. However, this has limited the electrical output performance due to their lower ferroelectric characteristics than those of inorganic ferroelectric materials. A lot of effort has been made to improve the organic ferroelectric characteristics through composites, surface modifications, structures, etc. Herein, we report TENGs made of ferroelectric composite materials consisting of poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The composite was prepared by simply blending PVDF-TrFE and PEDOT:PSS with a weight ratio from 0% to 60%. When the ratio was 20%, the ferroelectric-crystalline phase was enhanced and the highest dielectric constant was observed. Accordingly, the TENGs consisting of 20% composite film and polyimide exhibited the best output performance: the maximum open circuit voltage and short circuit current were ∼15 V and ∼2.3 µA at 1 Hz oscillation, respectively. These results indicate that the ferroelectric characteristics of PVDF-TrFE can be enhanced by adding PEDOT:PSS as a nanofiller.

6.
Sci Rep ; 12(1): 1724, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35110635

RESUMEN

This study introduces localized surface plasmon resonance (L-SPR) mediated heating filter membrane (HFM) for inactivating universal viral particles by using the photothermal effect of plasmonic metal nanoparticles (NPs). Plasmonic metal NPs were coated onto filter membrane via a conventional spray-coating method. The surface temperature of the HFM could be controlled to approximately 40-60 °C at room temperature, owing to the photothermal effect of the gold (Au) NPs coated on them, under irradiation by visible light-emitting diodes. Due to the photothermal effect of the HFMs, the virus titer of H1Npdm09 was reduced by > 99.9%, the full inactivation time being < 10 min, confirming the 50% tissue culture infective dose (TCID50) assay. Crystal violet staining showed that the infectious samples with photothermal inactivation lost their infectivity against Mardin-Darby Canine Kidney cells. Moreover, photothermal inactivation could also be applied to reduce the infectivity of SARS-CoV-2, showing reduction rate of 99%. We used quantitative reverse transcription polymerase chain reaction (qRT-PCR) techniques to confirm the existence of viral genes on the surface of the HFM. The results of the TCID50 assay, crystal violet staining method, and qRT-PCR showed that the effective and immediate reduction in viral infectivity possibly originated from the denaturation or deformation of membrane proteins and components. This study provides a new, simple, and effective method to inactivate viral infectivity, leading to its potential application in various fields of indoor air quality control and medical science.


Asunto(s)
COVID-19/virología , Calor , Luz , Nanopartículas del Metal , Filtros Microporos , SARS-CoV-2 , Resonancia por Plasmón de Superficie/métodos , Virión , Inactivación de Virus , Contaminación del Aire Interior , Animales , Células Cultivadas , Perros , Oro/química , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad
7.
Nano Lett ; 10(8): 2755-60, 2010 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-20604515

RESUMEN

We have developed carbon nanotube-based dual-mode biosensors with a metal semiconductor field effect transistor structure on a quartz substrate. DNA hybridization occurring on the Au top gate can be detected by simultaneously measuring the change in the electrical conductance and the surface plasmon resonance (SPR). Since electrical and SPR measurements offer high sensitivity and reliability, respectively, this dual-mode biosensor is expected to provide both of these features.

8.
Sci Rep ; 9(1): 4974, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30899064

RESUMEN

The quantification of uncertainty in the ensemble-based predictions of climate change and the corresponding hydrological impact is necessary for the development of robust climate adaptation plans. Although the equifinality of hydrological modeling has been discussed for a long time, its influence on the hydrological analysis of climate change has not been studied enough to provide a definite idea about the relative contributions of uncertainty contained in both multiple general circulation models (GCMs) and multi-parameter ensembles to hydrological projections. This study demonstrated that the impact of multi-GCM ensemble uncertainty on direct runoff projections for headwater watersheds could be an order of magnitude larger than that of multi-parameter ensemble uncertainty. The finding suggests that the selection of appropriate GCMs should be much more emphasized than that of a parameter set among behavioral ones. When projecting soil moisture and groundwater, on the other hand, the hydrological modeling equifinality was more influential than the multi-GCM ensemble uncertainty. Overall, the uncertainty of GCM projections was dominant for relatively rapid hydrological components while the uncertainty of hydrological model parameterization was more significant for slow components. In addition, uncertainty in hydrological projections was much more closely associated with uncertainty in the ensemble projections of precipitation than temperature, indicating a need to pay closer attention to precipitation data for improved modeling reliability. Uncertainty in hydrological component ensemble projections showed unique responses to uncertainty in the precipitation and temperature ensembles.

9.
Sci Rep ; 9(1): 6581, 2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31036892

RESUMEN

The piezoelectric nanogenerator (PENG) has the potential to become a promising power supply for monitoring and sensors in Internet of Things (IoT) systems through wireless networks. In order to further increase the utilization of energy harvesters in an IoT system, we introduce a novel approach that greatly enhances the piezoelectric output performances by employing the layer-by-layer (LbL) method. Poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) polymer film, which has piezoelectric properties and mechanical flexibility, was used for the active layer in PENG. The maximum open-circuit voltage and closed-circuit current of the LbL multilayer PENG reached 34 V and 100 nA, respectively. In particular, the closed-circuit current of the LbL multilayer PENG was dramatically improved to be five times higher than that of the single-layer PENG. Furthermore, a supercapacitor was employed to investigate the energy storage capability of PENGs using different methods. The proposed LbL multilayer PENG is expected to be a candidate for a promising power supply for self-powered systems in the IoT system.

10.
Biomed Opt Express ; 9(12): 6477-6496, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31065444

RESUMEN

Despite recent advances, high performance single-shot 3D microscopy remains an elusive task. By introducing designed diffractive optical elements (DOEs), one is capable of converting a microscope into a 3D "kaleidoscope," in which case the snapshot image consists of an array of tiles and each tile focuses on different depths. However, the acquired multifocal microscopic (MFM) image suffers from multiple sources of degradation, which prevents MFM from further applications. We propose a unifying computational framework which simplifies the imaging system and achieves 3D reconstruction via computation. Our optical configuration omits optical elements for correcting chromatic aberrations and redesigns the multifocal grating to enlarge the tracking area. Our proposed setup features only one single grating in addition to a regular microscope. The aberration correction, along with Poisson and background denoising, are incorporated in our deconvolution-based fully-automated algorithm, which requires no empirical parameter-tuning. In experiments, we achieve spatial resolutions of 0.35um (lateral) and 0.5um (axial), which are comparable to the resolution that can be achieved with confocal deconvolution microscopy. We demonstrate a 3D video of moving bacteria recorded at 25 frames per second using our proposed computational multifocal microscopy technique.

11.
J Adv Prosthodont ; 9(2): 118-123, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28435621

RESUMEN

PURPOSE: To investigate the effect of non-thermal atmospheric pressure plasma (NTAPP) treatment on shear bond strength (SBS) between resin cement and colored zirconia made with metal chlorides. MATERIALS AND METHODS: 60 zirconia specimens were divided into 3 groups using coloring liquid. Each group was divided again into 2 sub-groups using plasma treatment; the experimental group was treated with plasma, and the control group was untreated. The sub-groups were: N (non-colored), C (0.1 wt% aqueous chromium chloride solution), M (0.1 wt% aqueous molybdenum chloride solution), NP (non-colored with plasma), CP (0.1 wt% aqueous chromium chloride solution with plasma), and MP (0.1 wt% aqueous molybdenum chloride solution with plasma). Composite resin cylinders were bonded to zirconia specimens with MDP-based resin cement, and SBS was measured using a universal testing machine. All data was analyzed statistically using a 2-way ANOVA test and a Tukey test. RESULTS: SBS significantly increased when specimens were treated with NTAPP regardless of coloring (P<.001). Colored zirconia containing molybdenum showed the highest value of SBS, regardless of NTAPP. The molybdenum group showed the highest SBS, whereas the chromium group showed the lowest. CONCLUSION: NTAPP may increase the SBS of colored zirconia and resin cement. The NTAPP effect on SBS is not influenced by the presence of zirconia coloring.

12.
Sci Rep ; 7(1): 11818, 2017 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-28924196

RESUMEN

As x-ray and electron tomography is pushed further into the nanoscale, the limitations of rotation stages become more apparent, leading to challenges in the alignment of the acquired projection images. Here we present an approach for rapid post-acquisition alignment of these projections to obtain high quality three-dimensional images. Our approach is based on a joint estimation of alignment errors, and the object, using an iterative refinement procedure. With simulated data where we know the alignment error of each projection image, our approach shows a residual alignment error that is a factor of a thousand smaller, and it reaches the same error level in the reconstructed image in less than half the number of iterations. We then show its application to experimental data in x-ray and electron nanotomography.


Asunto(s)
Algoritmos , Tomografía con Microscopio Electrónico/métodos , Modelos Teóricos , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA