Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Control Release ; 269: 235-244, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29146242

RESUMEN

Drug delivery systems have been extensively developed to enhance the therapeutic efficacy of drugs by altering their pharmacokinetics and biodistribution. However, the use of high quantities of drug delivery systems can cause toxicity due to their poor metabolism and elimination. In this study, we developed polysaccharide-based drug delivery systems which exert potent therapeutic effects and could display synergistic therapeutic effects with drug payloads, leading to dose reduction. Cinnamaldehyde, a major component of cinnamon is known to induce anticancer activity by generating ROS (reactive oxygen species). We developed cinnamaldehyde-conjugated maltodextrin (CMD) as a polymeric prodrug of cinnamaldehyde and a drug carrier. Cinnamaldehyde was conjugated to the hydroxyl groups of maltodextrin via acid-cleavable acetal linkages, allowing facile formulation of nanoparticles and drug encapsulation. CMD nanoparticles induced acid-triggered ROS generation to induce apoptotic cell death. Camptothecin (CPT) was used as a model drug to investigate the potential of CMD nanoparticles as a drug carrier and also evaluate the synergistic anticancer effects with CMD nanoparticles. CPT-loaded CMD nanoparticles exhibited significantly higher anticancer activity than empty CMD nanoparticles and CPT alone in the study of mouse xenograft models, demonstrating the synergistic therapeutic effects of CMD with CPT. Taken together, we believe that CMD nanoparticles hold tremendous potential as a polymeric prodrug of cinnamaldehyde and a drug carrier in anticancer therapy.


Asunto(s)
Acroleína/análogos & derivados , Antineoplásicos Fitogénicos/administración & dosificación , Camptotecina/administración & dosificación , Portadores de Fármacos/administración & dosificación , Nanopartículas/administración & dosificación , Polisacáridos/administración & dosificación , Profármacos/administración & dosificación , Acroleína/administración & dosificación , Animales , Línea Celular , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
2.
ACS Appl Mater Interfaces ; 8(9): 5887-97, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26888039

RESUMEN

Cancer cells, compared to normal cells, are under oxidative stress associated with an elevated level of reactive oxygen species (ROS) and are more vulnerable to oxidative stress induced by ROS generating agents. Thus, manipulation of the ROS level provides a logical approach to kill cancer cells preferentially, without significant toxicity to normal cells, and great efforts have been dedicated to the development of strategies to induce cytotoxic oxidative stress for cancer treatment. Fenton reaction is an important biological reaction in which irons convert hydrogen peroxide (H2O2) to highly toxic hydroxyl radicals that escalate ROS stress. Here, we report Fenton reaction-performing polymer (PolyCAFe) micelles as a new class of ROS-manipulating anticancer therapeutic agents. Amphiphilic PolyCAFe incorporates H2O2-generating benzoyloxycinnamaldehyde and iron-containing compounds in its backbone and self-assembles to form micelles that serve as Nano-Fenton reactors to generate cytotoxic hydroxyl radicals, killing cancer cells preferentially. When intravenously injected, PolyCAFe micelles could accumulate in tumors preferentially to remarkably suppress tumor growth, without toxicity to normal tissues. This study demonstrates the tremendous translatable potential of Nano-Fenton reactors as a new class of anticancer drugs.


Asunto(s)
Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/farmacología , Hierro/química , Hierro/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Fragmentación del ADN/efectos de los fármacos , Compuestos Ferrosos/química , Células HEK293 , Humanos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/uso terapéutico , Concentración de Iones de Hidrógeno , Radical Hidroxilo/química , Radical Hidroxilo/farmacología , Hierro/uso terapéutico , Metalocenos , Ratones , Ratones Desnudos , Micelas , Células 3T3 NIH , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Polímeros/síntesis química , Polímeros/química , Especies Reactivas de Oxígeno/metabolismo , Trasplante Heterólogo
3.
Sci Rep ; 5: 16592, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26563741

RESUMEN

Overproduction of hydrogen peroxide (H2O2) causes oxidative stress and is the main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury. Suppression of oxidative stress is therefore critical in the treatment of I/R injury. Here, we report H2O2-activatable antioxidant prodrug (BRAP) that is capable of specifically targeting the site of oxidative stress and exerting anti-inflammatory and anti-apoptotic activities. BRAP with a self-immolative boronic ester protecting group was designed to scavenge H2O2 and release HBA (p-hydroxybenzyl alcohol) with antioxidant and anti-inflammatory activities. BRAP exerted potent antioxidant and anti-inflammatory activity in lipopolysaccharide (LPS)- and H2O2-stimulated cells by suppressing the generation of ROS and pro-inflammatory cytokines. In mouse models of hepatic I/R and cardiac I/R, BRAP exerted potent antioxidant, anti-inflammatory and anti-apoptotic activities due to the synergistic effects of H2O2-scavenging boronic esters and therapeutic HBA. In addition, administration of high doses of BRAP daily for 7 days showed no renal or hepatic function abnormalities. Therefore BRAP has tremendous therapeutic potential as H2O2-activatable antioxidant prodrug for the treatment of I/R injuries.


Asunto(s)
Antioxidantes/farmacología , Ácidos Borónicos/farmacología , Peróxido de Hidrógeno/antagonistas & inhibidores , Profármacos/farmacología , Daño por Reperfusión/prevención & control , Animales , Antiinflamatorios/farmacología , Antioxidantes/química , Apoptosis/efectos de los fármacos , Alcoholes Bencílicos/farmacología , Ácidos Borónicos/química , Caspasa 3/metabolismo , Línea Celular , Células Cultivadas , Expresión Génica/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Immunoblotting , Hígado/irrigación sanguínea , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Endogámicos BALB C , Microscopía Confocal , Estructura Molecular , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Profármacos/química , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
4.
Nat Commun ; 6: 6907, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25892552

RESUMEN

Cancer cells, compared with normal cells, are under oxidative stress associated with the increased generation of reactive oxygen species (ROS) including H2O2 and are also susceptible to further ROS insults. Cancer cells adapt to oxidative stress by upregulating antioxidant systems such as glutathione to counteract the damaging effects of ROS. Therefore, the elevation of oxidative stress preferentially in cancer cells by depleting glutathione or generating ROS is a logical therapeutic strategy for the development of anticancer drugs. Here we report a dual stimuli-responsive hybrid anticancer drug QCA, which can be activated by H2O2 and acidic pH to release glutathione-scavenging quinone methide and ROS-generating cinnamaldehyde, respectively, in cancer cells. Quinone methide and cinnamaldehyde act in a synergistic manner to amplify oxidative stress, leading to preferential killing of cancer cells in vitro and in vivo. We therefore anticipate that QCA has promising potential as an anticancer therapeutic agent.


Asunto(s)
Antineoplásicos/farmacología , Compuestos de Boro/farmacología , Ésteres/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Compuestos de Boro/síntesis química , Compuestos de Boro/química , Línea Celular , Cromatografía Liquida/métodos , Fragmentación del ADN , Ésteres/síntesis química , Ésteres/química , Peróxido de Hidrógeno , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Experimentales/tratamiento farmacológico , Distribución Aleatoria , Especies Reactivas de Oxígeno , Espectrometría de Masas en Tándem
5.
J Control Release ; 196: 19-27, 2014 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-25278257

RESUMEN

Cancer cells are under oxidative stress due to a large production of reactive oxygen species (ROS), which involve in cell proliferation and cancer promotion and progression. On the other hand, ROS promotes cell death, depending on the rate of ROS production and the activity of antioxidant systems. Recently, "oxidation therapy" has arisen as a promising anticancer strategy, which can be achieved by inducing the generation of cytotoxic level of ROS or inhibiting the antioxidant systems in tumor cells. Here, we report oxidative stress amplifying nanoplatforms as novel anticancer therapeutics, which are able not only to suppress antioxidant but also to generate ROS simultaneously in acidic tumor microenvironments. The oxidative stress amplifying nanoplatforms are composed of dual pH-sensitive PBCAE copolymer, polymeric prodrug of BCA (benzoyloxycinnamaldehyde) and heme oxygenase-1 (HO-1) inhibiting zinc protoporphyrin (ZnPP). PBCAE was designed to incorporate ROS-generating BCA in its backbone via acid-cleavable acetal linkages and self-assemble to form micelles that encapsulate ZnPP. In vitro proof-of-concept studies revealed that ZnPP encapsulated in PBCAE micelles suppressed HO-1 to make cancer cells more vulnerable to BCA-induced ROS, leading to enhanced apoptotic cell death. In addition, ZnPP-loaded PBCAE micelles significantly suppressed the tumor growth in human cancer xenograft mouse models. We believe that oxidative stress amplifying micellar nanoparticles have a great potential as novel redox anticancer therapeutics.


Asunto(s)
Antineoplásicos/farmacología , Micelas , Nanopartículas , Estrés Oxidativo/efectos de los fármacos , Acroleína/análogos & derivados , Acroleína/farmacología , Animales , Apoptosis/efectos de los fármacos , Benzoatos/farmacología , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/farmacología , Hemo-Oxigenasa 1/antagonistas & inhibidores , Humanos , Concentración de Iones de Hidrógeno , Ratones , Ratones Desnudos , Polímeros , Protoporfirinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA