Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(2): 1612-1618, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38170906

RESUMEN

Amino acid ionic liquids (AAILs) are promising green materials for CO2 capture and conversion due to their large chemical structural tunability. However, the structural understanding of the AAILs underlying the CO2 reaction dynamics remains uncertain. Herein, we examine the steric effects of AAIL anions with various chemical structures on CO2 capture behavior. Based on ab initio free-energy sampling, we assess reaction mechanisms for carbamate formation via a two-step reaction pathway with a zwitterion intermediate undergoing dynamic proton transfer. Our results show that free-energy barriers for carbamate formation can be significantly reduced as the degree of steric hindrance of the anions decreases. Further analyses reveal that reduced steric hindrance of anions causes markedly stronger intermolecular interactions between zwitterion and anions, leading to an increased kinetically favorable intermolecular proton transfer for carbamate production. We also describe the correlation strength between intramolecular interactions within the zwitterion and intermolecular interactions between the zwitterion and anions. We conclude that the favored structural flexibility due to the less steric hindrance of the zwitterion leads to enhanced intermolecular interactions, facilitating proton transfer to nearby AAIL anions for carbamate formation. Our study provides invaluable insight into the influence of various degrees of steric hindrance of the AAIL anions governing CO2 chemisorption. These findings may aid in the design of optimal AAIL solvents for the CO2 capture process.

2.
J Am Chem Soc ; 145(29): 15663-15667, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37439824

RESUMEN

Amino acid ionic liquids have received increasing attention as ideal candidates for the CO2 chemisorption process. However, the underlying molecular mechanisms, especially those involving proton transfer, remain unclear. In this work, we elucidate the atomistic-level reaction mechanisms responsible for carbamate formation during CO2 capture by amino acid ionic liquids through explicit ab initio molecular dynamics augmented by well-tempered metadynamics. The resulting ab initio free-energy sampling reveals a two-step reaction pathway in which a zwitterion, initially formed from the reaction between the anion of serine and CO2, undergoes a kinetically facile intermolecular proton transfer to the O atom of the COO- moiety in the nearby serine. Further analysis reveals that the significantly reduced free-energy barriers are attributed to enhanced intermolecular interaction between the zwitterion and serine, thus facilitating the kinetic favorability of the proton transfer, which governs the overall CO2 capture mechanism. This work provides valuable insight into the important mechanistic and kinetic features of these reactions from explicit condensed phase ab initio MD free-energy sampling of the CO2 capture process.

3.
Phys Chem Chem Phys ; 22(30): 17336-17343, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32696788

RESUMEN

This study attempts to explain the well-known experimental observation that 1,3-bis(2-aminoethyl)urea (urea) is preferentially formed over the other major product, 2-imidazolidone (IZD), from thermal degradation of aqueous ethylenediamine (EDA) during the CO2 capture process. This is in direct contrast to the case of monoethanolamine (MEA), preferentially forming oxazolidinone (OZD), rather than urea, which undergoes further reactions leading to more stable products. Given their similar molecular structures, the different preferred degradation pathways of EDA and MEA impose an intriguing question regarding the underlying mechanism responsible for the distinct difference. Thermal degradation of both EDA and MEA tends to proceed mainly via formation of an isocyanate intermediate that may further undergo either cyclization to IZD (or OZD) or a reaction with EDA (or MEA) forming urea. For the EDA case, our first-principles simulations clearly demonstrate that the urea formation reaction is kinetically more, but thermodynamically less, favorable than the cyclization reaction; the opposite is true for the MEA case. Our further analysis shows that EDA-isocyanate is less prone to cyclization than MEA-isocyanate, which in turn allows for more facile urea formation. The reconfiguration dynamics of isocyanate is found to be governed by the dynamic nature of the interaction between its terminal group and surrounding solvent molecules. Our work highlights the importance of kinetic effects associated with the local structure and dynamics of solvent molecules around the intermediates that may significantly alter the degradation process of amine solvents.

4.
Phys Chem Chem Phys ; 21(39): 22132-22139, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31570908

RESUMEN

Thermal degradation of aqueous monoethanolamine (MEA), a benchmark solvent, in CO2 capture processes still remains a challenge. Here, we present molecular mechanisms underlying thermal degradation of MEA based on ab initio molecular dynamics simulations coupled with metadynamics sampling. Isocyanate formation via dehydration of carbamic acid (MEACOOH) is predicted to be highly probable and more kinetically favorable than the competing cyclization-dehydration reaction to 2-oxazolidinone (OZD), albeit not substantially. Isocyanate may undergo cyclization to form OZD, which is found to be more facile in aqueous MEA solution than reaction with MEA to form urea, although the latter is thermodynamically more favorable than the former. Our simulations also clearly demonstrate that OZD is a long-lived intermediate that plays a key role in MEA thermal degradation to experimentally observed products. Overall, this work highlights the importance of entropic contributions associated with the local structure and dynamics of solvent molecules around the intermediates, which cannot be solely explained by thermodynamics, in predicting the mechanism and kinetics of thermal degradation of CO2-loaded aqueous amine solutions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA