Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 616(7957): 476-481, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37020016

RESUMEN

Using natural gas as chemical feedstock requires efficient oxidation of the constituent alkanes-and primarily methane1,2. The current industrial process uses steam reforming at high temperatures and pressures3,4 to generate a gas mixture that is then further converted into products such as methanol. Molecular Pt catalysts5-7 have also been used to convert methane to methanol8, but their selectivity is generally low owing to overoxidation-the initial oxidation products tend to be easier to oxidize than methane itself. Here we show that N-heterocyclic carbene-ligated FeII complexes with a hydrophobic cavity capture hydrophobic methane substrate from an aqueous solution and, after oxidation by the Fe centre, release a hydrophilic methanol product back into the solution. We find that increasing the size of the hydrophobic cavities enhances this effect, giving a turnover number of 5.0 × 102 and a methanol selectivity of 83% during a 3-h methane oxidation reaction. If the transport limitations arising from the processing of methane in an aqueous medium can be overcome, this catch-and-release strategy provides an efficient and selective approach to using naturally abundant alkane resources.

2.
J Am Chem Soc ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38604977

RESUMEN

Polar compounds with switchable polarization properties are applicable in various devices such as ferroelectric memory and pyroelectric sensors. However, a strategy to prepare polar compounds has not been established. We report a rational synthesis of a polar CoGa crystal using chiral cth ligands (SS-cth and RR-cth, cth = 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane). Both the original homo metal Co crystal and Ga crystal exhibit a centrosymmetric isostructure, where the dipole moment of metal complexes with the SS-cth ligand and those with the RR-cth ligand are canceled out. To obtain a polar compound, the Co valence tautomeric complex with SS-cth in the homo metal Co crystal is replaced with the Ga complex with SS-cth by mixing Co valence tautomeric complexes with RR-cth and Ga complexes with SS-cth. The CoGa crystal exhibits polarization switching between the pseudononpolar state at a low temperature and the polar state at a high temperature because only Co complexes exhibit changes in electric dipole moment due to metal-to-ligand charge transfer. Following the same strategy, the polarization-switchable CoZn complex was synthesized. The CoZn crystal exhibits polarization switching between the polar state at a low temperature and the pseudononpolar state at a high temperature, which is the opposite temperature dependence to that of the CoGa crystal. These results revealed that the polar crystal can be synthesized by design, using a chiral ligand. Moreover, our method allows for the control of temperature-dependent polarization changes, which contrasts with typical ferroelectric compounds, in which the polar ferroelectric phase typically occurs at low temperatures.

3.
Chemistry ; 30(24): e202400098, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38376431

RESUMEN

4,4'-Biazulene is a potentially attractive key component of an axially chiral biaryl compound, however, its structure and properties have not been clarified owing to the lack of its efficient synthesis. We report a breakthrough in the reliable synthesis of 4,4'-biazulene, which is achieved by the access to azulen-4-ylboronic acid pinacol ester and 4-iodoazulene as novel key synthetic intermediates for the Suzuki-Miyaura cross-coupling reaction. The X-ray crystallographic analysis of 4,4'-biazulene confirmed its axial chirality. The enantiomers of 4,4'-biazulene were successfully resolved by HPLC on the chiral stationary phase column. The kinetic experiments and DFT calculations indicate that the racemization energy barrier of 4,4'-biazulene is comparable to that of 1,1'-binaphthyl.

4.
Langmuir ; 40(24): 12613-12621, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38767655

RESUMEN

The adhesion of epoxy adhesives to aluminum materials is an important issue in assembling parts for lightweight mobility. Aluminum surfaces typically possess an oxide layer, which readily adsorbs water. In this study, the aggregation states of water and its effect on the curing reaction were examined by placing a water layer between an amorphous alumina surface and a mixture of epoxy and amine components. This study used molecular dynamics simulations and density functional theory calculations. Before the reaction, water molecules strongly adsorbed onto the alumina surface, aggregating excess water. Some water diffused into the epoxy/amine mixture, accelerating the diffusion of unreacted substances. This led to faster reaction kinetics, particularly in proximity to the alumina surface. The adsorption of water molecules onto the alumina surface and the aggregation of excess water were similarly observed even after the curing process. Subsequently, the interaction between the alumina surface and various functional groups of the epoxy/amine mixture was evaluated before and after the reaction. Epoxy monomers had little interaction with the alumina surface before the reaction, whereas hydroxy groups formed by the ring-opening reaction of epoxy groups exhibited notable interaction. Conversely, sulfonyl and amino groups in amine compounds formed hydrogen bonds with OH groups on the alumina surface before the reaction. However, after the reaction, amino groups weakened their interaction with the alumina OH groups as they transformed from primary to tertiary during the curing reaction. Both epoxy and amine monomers/fragments similarly interacted with water molecules, both before and after the reaction. The insights gained from this study are expected to contribute to a better understanding of the impact of moisture absorption on the application of epoxy resins.

5.
Langmuir ; 40(18): 9725-9731, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38652685

RESUMEN

A better understanding of the aggregation states of adhesive molecules in the interfacial region with an adherend is crucial for controlling the adhesion strength and is of great inherent academic interest. The adhesion mechanism has been described through four theories: adsorption, mechanical, diffusion, and electronic. While interfacial characterization techniques have been developed to validate the aforementioned theories, that related to the electronic theory has not yet been thoroughly studied. We here directly detected the electronic interaction between a commonly used thermosetting adhesive, cured epoxy of diglycidyl ether of bisphenol A (DGEBA) and 4,4'-diaminodiphenylmethane (DDM), and copper (Cu). This study used a combination of density functional theory (DFT) calculations and femtosecond transient absorption spectroscopic (TAS) measurements as this epoxy adhesive-Cu pairing is extensively used in electronic device packaging. The DFT calculations predicted that π electrons in a DDM molecule adsorbed onto the Cu surface flowed out onto the Cu surface, resulting in a positive charge on the DDM. TAS measurements for the Cu/epoxy multilayer film, a model sample containing many metal/adhesive interfaces, revealed that the electronic states of excited DDM moieties at the Cu interface were different from those in the bulk region. These results were in good accordance with the prediction by DFT calculations. Thus, it can be concluded that TAS is applicable to characterize the electronic interaction of adhesives with metal adherends in a nondestructive manner.

6.
J Am Chem Soc ; 145(3): 1497-1504, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36511728

RESUMEN

A coordination-induced trigger for catalytic activity is proposed on an N-heterocyclic carbene (NHC)-decorated ceria catalyst incorporating Cr and Rh (ICy-r-Cr0.19Rh0.06CeOz). ICy-r-Cr0.19Rh0.06CeOz was prepared by grafting 1,3-dicyclohexylimidazol-2-ylidene (ICy) onto H2-reduced Cr0.19Rh0.06CeOz (r-Cr0.19Rh0.06CeOz) surfaces, which went on to exhibit substantial catalytic activity for the 1,4-arylation of cyclohexenone with phenylboronic acid, whereas r-Cr0.19Rh0.06CeOz without ICy was inactive. FT-IR, Rh K-edge XAFS, XPS, and photoluminescence spectroscopy showed that the ICy carbene-coordinated Rh nanoclusters were the key active species. The coordination-induced trigger for catalytic activity on the ICy-bearing Rh nanoclusters could not be attributed to electronic donation from ICy to the Rh nanoclusters. DFT calculations suggested that ICy controlled the adsorption sites of the phenyl group on the Rh nanocluster to promote the C-C bond formation of the phenyl group and cyclohexenone.

7.
J Am Chem Soc ; 145(40): 21729-21732, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37650604

RESUMEN

Sulfite reduction by dissimilatory sulfite reductases is a key process in the global sulfur cycle. Sulfite reductases catalyze the 6e- reduction of SO32- to H2S using eight protons (SO32- + 8H+ + 6e- → H2S + 3H2O). However, detailed research into the reductive conversion of sulfite on transition-metal-based complexes remains unexplored. As part of our ongoing research into reproducing the function of reductases using dinuclear ruthenium complex {(TpRu)2(µ-Cl)(µ-pz)} (Tp = HB(pyrazolyl)3), we have targeted the function of sulfite reductase. The isolation of a key SO-bridged complex, followed by a sulfite-bridged complex, eventually resulted in a stepwise sulfite reduction. The reduction of a sulfite to a sulfur monoxide using 4H+ and 4e-, which was followed by conversion of the sulfur monoxide to a disulfide with concomitant consumption of 2H+ and 2e-, proceeded on the same platform. Finally, the production of H2S from the disulfide-bridged complex was achieved.

8.
Small ; 19(11): e2205857, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36623935

RESUMEN

To increase chemical reaction rates, general solutions include increasing the concentration/temperature and introducing catalysts. In this study, the rate constant of an electrophilic metal coordination reaction is accelerated 23-fold on the surface of layered aluminosilicate (LAS), where the reaction substrate (ligand molecule) induces dielectric polarization owing to the polar and anionic surface. According to the Arrhenius plot, the frequency factor (A) is increased by almost three orders of magnitude on the surface. This leads to the conclusion that the collision efficiency between the ligands and metal ions is enhanced on the surface due to the dielectric polarization. This is surprising because one side of the ligand is obscured by the surface, so the collision efficiency is expected to be decreased. This unique method to accelerate the chemical reaction is expected to expand the range of utilization of LASs, which are chemically inert, abundant, and environmentally friendly. The concept is also applicable to other metal oxides which have polar surfaces, which will be useful for various chemical reactions in the future.

9.
Chemistry ; 29(39): e202300988, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37186127

RESUMEN

Herein, we describe Hiyama coupling via intramolecular substituent transfer from silicon on one blade of triptycenes to another to yield 1,8,13-trisubstituted chiral triptycenes. This reaction is attributed to the proximity effect of substituents on triptycene, which plays an important role in not only the formation of the oxy-palladacycle but also the activation of the silyl group to facilitate σ-bond metathesis. After bromination and nucleophilic ring opening, the second intramolecular Hiyama coupling provided various 1,8,13-trisubstituted chiral triptycenes. The optical resolution of 1,8,13-triptycene afforded an optically active form for the first time.

10.
Chemistry ; 29(70): e202302550, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37643995

RESUMEN

The formation of Lewis pairs is an important chemical concept. Recently, the complexation of Lewis acidic tris(pentafluorophenyl)borane with Lewis basic moieties and subsequent reduction has emerged as a fascinating strategy for designing novel reactions and structures. The impact of the complexation and subsequent reduction of antiaromatic systems bearing Lewis base moieties has been investigated. We found how Lewis adduct formation stabilizes an antiaromatic system consisting of 9,10-dicyanoanthracene and tris(pentafluorophenyl)borane by using synthesis, X-ray crystallography, spectroscopic analysis, and quantum chemical calculations.

11.
Langmuir ; 39(15): 5514-5526, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37027214

RESUMEN

The adhesion mechanism of epoxy resin (ER) cured material consisting of diglycidyl ether of bisphenol A (DGEBA) and 4,4'-diaminodiphenyl sulfone (DDS) to pristine graphene and graphene oxide (GO) surfaces is investigated on the basis of first-principles density functional theory (DFT) with dispersion correction. Graphene is often used as a reinforcing filler incorporated into ER polymer matrices. The adhesion strength is significantly improved by using GO obtained by the oxidation of graphene. The interfacial interactions at the ER/graphene and ER/GO interfaces were analyzed to clarify the origin of this adhesion. The contribution of dispersion interaction to the adhesive stress at the two interfaces is almost identical. In contrast, the DFT energy contribution is found to be more significant at the ER/GO interface. Crystal orbital Hamiltonian population (COHP) analysis suggests the existence of hydrogen bonding (H-bonding) between the hydroxyl, epoxide, amine, and sulfonyl groups of the ER cured with DDS and the hydroxyl groups of the GO surface, in addition to the OH-π interaction between the benzene rings of ER and the hydroxyl groups of the GO surface. The H-bond has a large orbital interaction energy, which is found to contribute significantly to the adhesive strength at the ER/GO interface. The overall interaction at the ER/graphene is much weaker due to antibonding type interactions just below the Fermi level. This finding indicates that only dispersion interaction is significant when ER is adsorbed on the graphene surface.

12.
Langmuir ; 39(50): 18537-18547, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38053394

RESUMEN

The adhesion mechanism of epoxy resin to the γ-alumina (110) surface was investigated using first-principles density functional theory (DFT). Aluminum materials are lightweight and are used in a wide range of industrial fields. Its surface is oxidized to alumina, and the stable surface is known as the γ-alumina (110) surface. The coverage of hydroxy groups by chemisorbed water molecules on this surface varied depending on the pretreatment temperature. In this study, we investigated the adhesive interactions of epoxy resin on four alumina surfaces with different densities of surface hydroxy groups (0, 3, 6, and 9 OH/nm2) and have discussed their effects. At each interface, the energy curves of the vertically displaced epoxy resin were calculated and the adhesive forces were estimated by differentiating these curves. As the coverage of the surface hydroxy groups increased from 0 to 6 OH/nm2, the adhesive strength gradually decreased. However, the adhesive strength at 9 OH/nm2 was relatively large and almost equal to that at 3 OH/nm2. This inverse volcano-type behavior was analyzed via the decomposition of adhesive forces and the crystal orbital Hamilton population (COHP). The decomposition of adhesive forces into DFT and dispersion components revealed that the inverse volcano-type behavior is derived from the DFT component, and the interfacial interactions owing to the DFT component are accompanied by charge transfer. These were investigated using a COHP analysis, which revealed that this behavior was caused by changes in the activity of the aluminum atoms on the surface and surface reconstruction by chemisorbed water molecules. It is noteworthy that the adhesive strength for 9 OH/nm2 was only 6.9% lower than that for 0 OH/nm2 wherein the chemisorbed water molecules were completely removed from the surface. These results are expected to provide a guideline for the adhesion of epoxy resin to aluminum materials.

13.
J Org Chem ; 88(21): 14887-14898, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37846097

RESUMEN

Face-to-face stacking of aromatic compounds leads to stacked antiaromaticity, while that of antiaromatic compounds leads to stacked aromaticity. This is a prediction with a long history; in the late 2000s, the prediction was confirmed by high-precision quantum chemical calculations, and finally, in 2016, a π-conjugated system with stacked aromaticity was synthesized. Several variations have since been reported, but essentially, they are all the same molecule. To realize stacked aromaticity in a completely new and different molecular system and to trigger an extension of the concept of stacked aromaticity, it is important to understand the origin of stacked aromaticity. The Hückel method, which has been successful in giving qualitatively correct results for π-conjugated systems despite its bold assumptions, is well suited for the analysis of stacked aromaticity. We use this method to model the face-to-face stacking systems of benzene and cyclobutadiene molecules and discuss their stacked antiaromaticity and stacked aromaticity on the basis of their π-electron energies. By further developing the discussion, we search for clues to realize stacked aromaticity in synthesizable molecular systems.

14.
Inorg Chem ; 62(34): 13765-13774, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37590095

RESUMEN

The literature contains numerous reports of copper complexes for nitrite (NO2-) reduction. However, details of how protons and electrons arrive and how nitric oxide (NO) is released remain unknown. The influence of the coordination mode of nitrite on reactivity is also under debate. Kundu and co-workers have reported nitrite reduction by a copper(II) complex [J. Am. Chem. Soc. 2020, 142, 1726-1730]. In their report, the copper(II) complex reduced nitrite using a phenol derivative as a reductant, resulting in NO, a hydroxyl copper(II) complex, and the corresponding biphenol. Also, the involvement of proton-coupled electron transfer was proposed by mechanistic studies. Herein, density functional theory calculations were performed to determine a mechanism for reduction of nitrite by a copper(II) complex. As a result of geometry optimization of an initial complex, two possible structures were obtained: Cu-ONO and Cu-NO2. Two possible reaction pathways initiated from Cu-ONO or Cu-NO2 were then considered. The calculation results indicated that the Cu-ONO pathway is energetically favorable. When changes in the electronic structure were considered, both pathways were found to involve concerted proton-electron transfer (CPET). In addition, an intrinsic reaction coordinate analysis revealed that the two pathways were achieved by different types of CPET. Furthermore, an intrinsic bond orbital analysis clearly indicated that, in the Cu-ONO pathway, the chemical events involved proceeded concertedly yet asynchronously.

15.
Inorg Chem ; 62(30): 11785-11795, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37307067

RESUMEN

Co(II)-pyrocobester (P-Co(II)), a dehydrocorrin complex, was semisynthesized from vitamin B12 (cyanocobalamin), and its photochemical and electrochemical properties were investigated and compared to those of the cobester (C-Co(II)), the cobalt-corrin complex. The UV-vis absorptions of P-Co(II) in CH2Cl2, ascribed to the π-π* transition, were red-shifted compared to those of C-Co(II) due to the π-expansion of the macrocycle in the pyrocobester. The reversible redox couple of P-Co(II) was observed at E1/2 = -0.30 V vs Ag/AgCl in CH3CN, which was assigned to the Co(II)/Co(I) redox couple by UV-vis, ESR, and molecular orbital analysis. This redox couple was positively shifted by 0.28 V compared to that of C-Co(II). This is caused by the high electronegativity of the dehydrocorrin macrocycle, which was estimated by DFT calculations for the free-base ligands. The reactivity of the Co(I)-pyrocobester (P-Co(I)) was evaluated by the reaction with methyl iodide in CV and UV-vis to form a photosensitive Co(III)-CH3 complex (P-Co(III)-CH3). The properties of the excited state of P-Co(I), *Co(I), were also investigated by femtosecond transient absorption (TA) spectroscopy. The lifetime of *Co(I) was estimated to be 29 ps from the kinetic trace at 587 nm. The lifetime of *Co(I) became shorter in the presence of Ar-X, such as iodobenzonitrile (1a), bromobenzonitrile (1b), and chlorobenzonitrile (1c), and the rate constants of electron transfer (ET) between the *Co(I) and Ar-X were determined to be 2.9 × 1011 M-1 s-1, 4.9 × 1010 M-1 s-1, and 1.0 × 1010 M-1 s-1 for 1a, 1b, and 1c, respectively.

16.
Inorg Chem ; 62(14): 5348-5356, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36728764

RESUMEN

Chemoselective reductive conversion of organic and inorganic compounds has been developed by the combination of samarium(II) diiodide (SmI2) and water. Despite the extensive previous studies to elucidate the role of water in the reactivity of SmI2, the direct structural data of the reactive Sm2+-water complexes, SmI2(H2O)n, in an organic solvent-water mixture have not been reported experimentally so far. Herein, we performed the structure analysis of the Sm2+-water complex in tetrahydrofuran (THF) in the presence of water by in situ X-ray absorption spectroscopy using high-energy X-rays (Sm K-edge, 46.8 keV). The analysis revealed the dissociation of the Sm2+-I bonds in the presence of ≥ eight equivalents of water in the THF-water mixture. The origin of the peak shift in the UV/visible absorption spectra after the addition of water into SmI2/THF solution was proposed based on electron transitions simulated with time-dependent density-functional-theory calculations using optimized structures in THF or water. The obtained structural information provides the fundamental insights for elucidating the reactivity and chemoselectivity in the Sm2+-water complex system.

17.
J Phys Chem A ; 127(22): 4780-4786, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37243683

RESUMEN

Recent studies have theoretically and experimentally demonstrated that antiaromatic molecules with 4n π electrons exhibit stacked aromaticity according to π-π stacking when arranged in a face-to-face manner. However, the mechanism of its occurrence has not been clearly studied. In this study, we investigated the mechanism of stacked aromaticity using cyclobutadiene. When the antiaromatic molecules are stacked in a face-to-face manner, the orbital interactions between the degenerate singly occupied molecular orbitals (SOMOs) of the monomer unit cause a larger energy gap between the degenerate highest-occupied molecular orbitals (HOMOs) and the lowest-unoccupied molecular orbitals (LUMOs) of the dimer. However, the antiaromatic molecules are more stable in less symmetric conformations, mainly because of pseudo-Jahn-Teller distortions. In the case of cyclobutadiene, the two SOMOs of the monomer unit split into HOMO and LUMO because of the bond alternation. When the molecules are stacked in a face-to-face manner, the HOMO-LUMO gap of the dimer is smaller than that of the monomer due to the interactions between the HOMOs and LUMOs of the two monomer units. When the monomer units are within a specific distance of each other, the HOMO and LUMO of the dimer, which correspond to antibonding and bonding between the units, respectively, are interchanged. This alternation of molecular orbitals may result in an increase in the bond strength between the monomer units, exhibiting stacked aromaticity. We demonstrated that it is possible to control the distance exhibited by stacked aromaticity by engineering the HOMO-LUMO gap of the monomer units.

18.
Angew Chem Int Ed Engl ; 62(43): e202306631, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37382559

RESUMEN

We newly designed and prepared a novel molybdenum complex bearing a 4-[3,5-bis(trifluoromethyl)phenyl]pyridine-based PNP-type pincer ligand, based on the bond dissociation free energies (BDFEs) of the N-H bonds in molybdenum-imide complexes bearing various substituted pyridine-based PNP-type pincer ligands. The complex worked as an excellent catalyst toward ammonia formation from the reaction of an atmospheric pressure of dinitrogen with samarium diiodide as a reductant and water as a proton source under ambient reaction conditions, where up to 3580 equivalents of ammonia were formed based on the molybdenum atom of the catalyst. The catalytic activity was significantly improved by one order of magnitude larger than that observed when using the complex before modification.

19.
J Am Chem Soc ; 144(40): 18650-18671, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36153993

RESUMEN

Oxidative addition of CH4 to the catalyst surface produces CH3 and H. If the CH3 species generated on the surface couple with each other, reductive elimination of C2H6 may be achieved. Similarly, H's could couple to form H2. This is the outline of nonoxidative coupling of methane (NOCM). It is difficult to achieve this reaction on a typical Pt catalyst surface. This is because methane is overoxidized and coking occurs. In this study, the authors approach this problem from a molecular aspect, relying on organometallic or complex chemistry concepts. Diagrams obtained by extending the concepts of the Walsh diagram to surface reactions are used extensively. C-H bond activation, i.e., oxidative addition, and C-C and H-H bond formation, i.e., reductive elimination, on metal catalyst surfaces are thoroughly discussed from the point of view of orbital theory. The density functional theory method for structural optimization and accurate energy calculations and the extended Hückel method for detailed analysis of crystal orbital changes and interactions play complementary roles. Limitations of monometallic catalysts are noted. Therefore, a rational design of single atom alloy (SAA) catalysts is attempted. As a result, the effectiveness of the Pt1/Au(111) SAA catalyst for NOCM is theoretically proposed. On such an SAA surface, one would expect to find a single Pt monatomic site in a sea of inert Au atoms. This is desirable for both inhibiting overoxidation and promoting reductive elimination.

20.
Chemistry ; 28(25): e202200557, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35199891

RESUMEN

A series of chromium-halide, -nitride, and -dinitrogen complexes bearing carbene- and phosphine-based PCP-type pincer ligands has been newly prepared, and some of them are found to work as effective catalysts to reduce dinitrogen under atmospheric pressure, whereby up to 11.60 equiv. of ammonia and 2.52 equiv. of hydrazine (16.6 equiv. of fixed N atom) are produced based on the chromium atom. To the best of our knowledge, this is the first successful example of chromium-catalyzed conversion of dinitrogen to ammonia and hydrazine under mild reaction conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA