Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Biol ; 21(1): 219, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37840141

RESUMEN

BACKGROUND: Social affinity and collective behavior are nearly ubiquitous in the animal kingdom, but many lineages feature evolutionarily asocial species. These solitary species may have evolved to conserve energy in food-sparse environments. However, the mechanism by which metabolic shifts regulate social affinity is not well investigated. RESULTS: In this study, we used the Mexican tetra (Astyanax mexicanus), which features riverine sighted surface (surface fish) and cave-dwelling populations (cavefish), to address the impact of metabolic shifts on asociality and other cave-associated behaviors in cavefish, including repetitive turning, sleeplessness, swimming longer distances, and enhanced foraging behavior. After 1 month of ketosis-inducing ketogenic diet feeding, asocial cavefish exhibited significantly higher social affinity, whereas social affinity regressed in cavefish fed the standard diet. The ketogenic diet also reduced repetitive turning and swimming in cavefish. No major behavioral shifts were found regarding sleeplessness and foraging behavior, suggesting that other evolved behaviors are not largely regulated by ketosis. We further examined the effects of the ketogenic diet via supplementation with exogenous ketone bodies, revealing that ketone bodies are pivotal molecules positively associated with social affinity. CONCLUSIONS: Our study indicated that fish that evolved to be asocial remain capable of exhibiting social affinity under ketosis, possibly linking the seasonal food availability and sociality.


Asunto(s)
Characidae , Cetosis , Trastornos del Inicio y del Mantenimiento del Sueño , Animales , Characidae/fisiología , Cuerpos Cetónicos , Evolución Biológica , Cuevas
2.
BMC Biol ; 20(1): 295, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575431

RESUMEN

BACKGROUND: Laterality in relation to behavior and sensory systems is found commonly in a variety of animal taxa. Despite the advantages conferred by laterality (e.g., the startle response and complex motor activities), little is known about the evolution of laterality and its plasticity in response to ecological demands. In the present study, a comparative study model, the Mexican tetra (Astyanax mexicanus), composed of two morphotypes, i.e., riverine surface fish and cave-dwelling cavefish, was used to address the relationship between environment and laterality. RESULTS: The use of a machine learning-based fish posture detection system and sensory ablation revealed that the left cranial lateral line significantly supports one type of foraging behavior, i.e., vibration attraction behavior, in one cave population. Additionally, left-right asymmetric approaches toward a vibrating rod became symmetrical after fasting in one cave population but not in the other populations. CONCLUSION: Based on these findings, we propose a model explaining how the observed sensory laterality and behavioral shift could help adaptation in terms of the tradeoff in energy gain and loss during foraging according to differences in food availability among caves.


Asunto(s)
Cuevas , Characidae , Animales , Evolución Biológica , Characidae/fisiología , Conducta Animal/fisiología , Órganos de los Sentidos
3.
J Exp Zool B Mol Dev Evol ; 334(7-8): 438-449, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31930686

RESUMEN

Astyanax mexicanus consists of two forms, a sighted surface dwelling form (surface fish) and a blind cave-dwelling form (cavefish). Embryonic eyes are initially formed in cavefish but they are subsequently arrested in growth and degenerate during larval development. Previous lens transplantation studies have shown that the lens plays a central role in cavefish eye loss. However, several lines of evidence suggest that additional factors, such as the retinal pigment epithelium (RPE), which is morphologically altered in cavefish, could also be involved in the eye regression process. To explore the role of the RPE in cavefish eye degeneration, we generated an albino eyed (AE) strain by artificial selection for hybrid individuals with large eyes and a depigmented RPE. The AE strain exhibited an RPE lacking pigment granules and showed reduced expression of the RPE specific enzyme retinol isomerase, allowing eye development to be studied by lens ablation in an RPE background resembling cavefish. We found that lens ablation in the AE strain had stronger negative effects on eye growth than in surface fish, suggesting that an intact RPE is required for normal eye development. We also found that the AE strain develops a cartilaginous sclera lacking boney ossicles, a trait similar to cavefish. Extrapolation of the results to cavefish suggests that the RPE and lens have dual roles in eye degeneration, and that deficiencies in the RPE may be associated with evolutionary changes in scleral ossification.


Asunto(s)
Characidae/embriología , Ojo/embriología , Cristalino/embriología , Epitelio Pigmentado de la Retina/embriología , Animales , Cuevas , Characidae/anatomía & histología , Characidae/crecimiento & desarrollo , Ojo/crecimiento & desarrollo , Anomalías del Ojo/embriología , Femenino , Cristalino/crecimiento & desarrollo , Masculino , Epitelio Pigmentado de la Retina/anatomía & histología , Epitelio Pigmentado de la Retina/crecimiento & desarrollo
4.
Dev Biol ; 441(2): 262-271, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29782817

RESUMEN

Many animal species exhibit laterality in sensation and behavioral responses, namely, the preference for using either the left or right side of the sensory system. For example, some fish use their left eye when observing social stimuli, whereas they use their right eye to observe novel objects. However, it is largely unknown whether such laterality in sensory-behavior coupling evolves during rapid adaptation processes. Here, in the Mexican tetra, Astyanax mexicanus, we investigate the laterality in the relationship between an evolved adaptive behavior, vibration attraction behavior (VAB), and its main sensors, mechanosensory neuromasts. A. mexicanus has a surface-dwelling form and cave-dwelling forms (cavefish), whereby a surface fish ancestor colonized the new environment of a cave, eventually evolving cave-type morphologies such as increased numbers of neuromasts at the cranium. These neuromasts are known to regulate VAB, and it is known that, in teleosts, the budding (increasing) process of neuromasts is accompanied with dermal bone formation. This bone formation is largely regulated by endothelin signaling. To assess the evolutionary relationship between bone formation, neuromast budding, and VAB, we treated 1-3 month old juvenile fish with endothelin receptor antagonists. This treatment significantly increased cranial neuromasts in both surface and cavefish, and the effect was significantly more pronounced in cavefish. Antagonist treatment also increased the size of dermal bones in cavefish, but neuromast enhancement was observed earlier than dermal bone formation, suggesting that endothelin signaling may independently regulate neuromast development and bone formation. In addition, although we did not detect a major change in VAB level under this antagonist treatment, cavefish did show a positive correlation of VAB with the number of neuromasts on their left side but not their right. This laterality in correlation was observed when VAB emerged during cavefish development, but it was not seen in surface fish under any conditions tested, suggesting this laterality emerged through an evolutionary process. Above all, cavefish showed higher developmental plasticity in neuromast number and bone formation, and they showed an asymmetric correlation between the number of left-right neuromasts and VAB.


Asunto(s)
Evolución Biológica , Characiformes/embriología , Conducta Alimentaria/fisiología , Mecanotransducción Celular/fisiología , Osteogénesis/fisiología , Cráneo/embriología , Animales , Endotelinas/metabolismo , Proteínas de Peces/agonistas , Proteínas de Peces/metabolismo , Receptores de Endotelina/agonistas , Receptores de Endotelina/metabolismo
5.
Dev Biol ; 441(2): 209-220, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30031754

RESUMEN

The role of maternal factors in the evolution of development is poorly understood. Here we describe the use of reciprocal hybridization between the surface dwelling (surface fish, SF) and cave dwelling (cavefish, CF) morphs of the teleost Astyanax mexicanus to investigate the roles of maternal genetic effects in cavefish development. Reciprocal hybridization, a procedure in which F1 hybrids are generated by fertilizing SF eggs with CF sperm (SF × CF hybrids) and CF eggs with SF sperm (CF × SF hybrids), revealed that the CF degenerative eye phenotype showed maternal genetic effects. The eyes of CF × SF hybrids resembled the degenerate eyes of CF in showing ventral reduction of the retina and corresponding displacement of the lens within the optic cup, a smaller lens and eyeball, more lens apoptosis, a smaller cartilaginous sclera, and lens-specific gene expression characteristics compared to SF × CF hybrids, which showed eye and lens gene expression phenotypes resembling SF. In contrast, reciprocal hybridization failed to support roles for maternal genetic effects in the CF regressive pigmentation phenotype or in CF constructive changes related to enhanced jaw development. Maternal transcripts encoded by the pou2f1b, runx2b, and axin1 genes, which are involved in determining ventral embryonic fates, were increased in unfertilized CF eggs. In contrast, maternal mRNAs encoded by the ß-catenin and syntabulin genes, which control dorsal embryonic fates, showed similar expression levels in unfertilized SF and CF eggs. Furthermore, maternal transcripts of a sonic hedgehog gene were detected in SF and CF eggs and early cleaving embryos. This study reveals that CF eye degeneration is controlled by changes in maternal factors produced during oogenesis and introduces A. mexicanus as a model system for studying the role of maternal changes in the evolution of development.


Asunto(s)
Characiformes , Cruzamientos Genéticos , Ojo/embriología , Proteínas de Peces , Regulación del Desarrollo de la Expresión Génica/fisiología , Herencia Materna/fisiología , Animales , Apoptosis/genética , Characiformes/embriología , Characiformes/genética , Femenino , Proteínas de Peces/biosíntesis , Proteínas de Peces/genética , Masculino
6.
BMC Evol Biol ; 18(1): 89, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29909776

RESUMEN

BACKGROUND: An essential question in evolutionary biology is whether shifts in a set of polygenic behaviors share a genetic basis across species. Such a behavioral shift is seen in the cave-dwelling Mexican tetra, Astyanax mexicanus. Relative to surface-dwelling conspecifics, cavefish do not school (asocial), are hyperactive and sleepless, adhere to a particular vibration stimulus (imbalanced attention), behave repetitively, and show elevated stress hormone levels. Interestingly, these traits largely overlap with the core symptoms of human autism spectrum disorder (ASD), raising the possibility that these behavioral traits are underpinned by a similar set of genes (i.e. a repeatedly used suite of genes). RESULT: Here, we explored whether modification of ASD-risk genes underlies cavefish evolution. Transcriptomic analyses revealed that > 58.5% of 3152 cavefish orthologs to ASD-risk genes are significantly up- or down-regulated in the same direction as genes in postmortem brains from ASD patients. Enrichment tests suggest that ASD-risk gene orthologs in A. mexicanus have experienced more positive selection than other genes across the genome. Notably, these positively selected cavefish ASD-risk genes are enriched for pathways involved in gut function, inflammatory diseases, and lipid/energy metabolism, similar to symptoms that frequently coexist in ASD patients. Lastly, ASD drugs mitigated cavefish's ASD-like behaviors, implying shared aspects of neural processing. CONCLUSION: Overall, our study indicates that ASD-risk genes and associated pathways (especially digestive, immune and metabolic pathways) may be repeatedly used for shifts in polygenic behaviors across evolutionary time.


Asunto(s)
Trastorno Autístico/genética , Evolución Biológica , Characidae/genética , Predisposición Genética a la Enfermedad , Carácter Cuantitativo Heredable , Animales , Trastorno Autístico/tratamiento farmacológico , Cuevas , Cruzamientos Genéticos , Femenino , Regulación de la Expresión Génica , Genoma , Humanos , Hibridación Genética , Masculino , Fenotipo , Sitios de Carácter Cuantitativo/genética , Factores de Riesgo
7.
Mol Ecol ; 27(22): 4397-4416, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30252986

RESUMEN

Understanding the molecular basis of repeatedly evolved phenotypes can yield key insights into the evolutionary process. Quantifying gene flow between populations is especially important in interpreting mechanisms of repeated phenotypic evolution, and genomic analyses have revealed that admixture occurs more frequently between diverging lineages than previously thought. In this study, we resequenced 47 whole genomes of the Mexican tetra from three cave populations, two surface populations and outgroup samples. We confirmed that cave populations are polyphyletic and two Astyanax mexicanus lineages are present in our data set. The two lineages likely diverged much more recently than previous mitochondrial estimates of 5-7 mya. Divergence of cave populations from their phylogenetically closest surface population likely occurred between ~161 and 191 k generations ago. The favoured demographic model for most population pairs accounts for divergence with secondary contact and heterogeneous gene flow across the genome, and we rigorously identified gene flow among all lineages sampled. Therefore, the evolution of cave-related traits occurred more rapidly than previously thought, and trogolomorphic traits are maintained despite gene flow with surface populations. The recency of these estimated divergence events suggests that selection may drive the evolution of cave-derived traits, as opposed to disuse and drift. Finally, we show that a key trogolomorphic phenotype QTL is enriched for genomic regions with low divergence between caves, suggesting that regions important for cave phenotypes may be transferred between caves via gene flow. Our study shows that gene flow must be considered in studies of independent, repeated trait evolution.


Asunto(s)
Evolución Biológica , Cuevas , Characidae/genética , Flujo Génico , Genética de Población , Animales , México , Modelos Genéticos , Fenotipo , Filogenia , Sitios de Carácter Cuantitativo
8.
J Exp Biol ; 220(Pt 2): 284-293, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28100806

RESUMEN

Sleep is an essential behavior exhibited by nearly all animals, and disruption of this process is associated with an array of physiological and behavioral deficits. Sleep is defined by changes in sensory gating that reduce sensory input to the brain, but little is known about the neural basis for interactions between sleep and sensory processing. Blind Mexican cavefish comprise an extant surface dwelling form and 29 cave morphs that have independently evolved increased numbers of mechanoreceptive lateral line neuromasts and convergent evolution of sleep loss. Ablation of the lateral line enhanced sleep in the Pachón cavefish population, suggesting that heightened sensory input underlies evolutionarily derived sleep loss. Targeted lateral line ablation and behavioral analysis localized the wake-promoting neuromasts in Pachón cavefish to superficial neuromasts of the trunk and cranial regions. Strikingly, lateral line ablation did not affect sleep in four other cavefish populations, suggesting that distinct neural mechanisms regulate the evolution of sleep loss in independently derived cavefish populations. Cavefish are subject to seasonal changes in food availability, raising the possibility that sensory modulation of sleep is influenced by metabolic state. We found that starvation promotes sleep in Pachón cavefish, and is not enhanced by lateral line ablation, suggesting that functional interactions occur between sensory and metabolic regulation of sleep. Taken together, these findings support a model where sensory processing contributes to evolutionarily derived changes in sleep that are modulated in accordance with food availability.


Asunto(s)
Characidae/fisiología , Sistema de la Línea Lateral/fisiología , Sueño , Animales , Evolución Biológica , Cuevas , México
9.
Proc Natl Acad Sci U S A ; 110(42): 16933-8, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24085851

RESUMEN

When an organism colonizes a new environment, it needs to adapt both morphologically and behaviorally to survive and thrive. Although recent progress has been made in understanding the genetic architecture underlying morphological evolution, behavioral evolution is poorly understood. Here, we use the Mexican cavefish, Astyanax mexicanus, to study the genetic basis for convergent evolution of feeding posture. When river-dwelling surface fish became entrapped in the caves, they were confronted with dramatic changes in the availability and type of food source and in their ability to perceive it. In this setting, multiple independent populations of cavefish exhibit an altered feeding posture compared with their ancestral surface forms. We determined that this behavioral change in feeding posture is not due to changes in cranial facial morphology, body depth, or to take advantage of the expansion in the number of taste buds. Quantitative genetic analysis demonstrates that two different cave populations have evolved similar feeding postures through a small number of genetic changes, some of which appear to be distinct. This work indicates that independently evolved populations of cavefish can evolve the same behavioral traits to adapt to similar environmental challenges by modifying different sets of genes.


Asunto(s)
Conducta Animal/fisiología , Cuevas , Characidae/fisiología , Evolución Molecular , Conducta Alimentaria/fisiología , Sitios Genéticos/fisiología , Animales
10.
BMC Biol ; 13: 15, 2015 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-25761998

RESUMEN

BACKGROUND: Sleep is characterized by extended periods of quiescence and reduced responsiveness to sensory stimuli. Animals ranging from insects to mammals adapt to environments with limited food by suppressing sleep and enhancing their response to food cues, yet little is known about the genetic and evolutionary relationship between these processes. The blind Mexican cavefish, Astyanax mexicanus is a powerful model for elucidating the genetic mechanisms underlying behavioral evolution. A. mexicanus comprises an extant ancestral-type surface dwelling morph and at least five independently evolved cave populations. Evolutionary convergence on sleep loss and vibration attraction behavior, which is involved in prey seeking, have been documented in cavefish raising the possibility that enhanced sensory responsiveness underlies changes in sleep. RESULTS: We established a system to study sleep and vibration attraction behavior in adult A. mexicanus and used high coverage quantitative trait loci (QTL) mapping to investigate the functional and evolutionary relationship between these traits. Analysis of surface-cave F2 hybrid fish and an outbred cave population indicates that independent genetic factors underlie changes in sleep/locomotor activity and vibration attraction behavior. High-coverage QTL mapping with genotyping-by-sequencing technology identify two novel QTL intervals that associate with locomotor activity and include the narcolepsy-associated tp53 regulating kinase. These QTLs represent the first genomic localization of locomotor activity in cavefish and are distinct from two QTLs previously identified as associating with vibration attraction behavior. CONCLUSIONS: Taken together, these results localize genomic regions underlying sleep/locomotor and sensory changes in cavefish populations and provide evidence that sleep loss evolved independently from enhanced sensory responsiveness.


Asunto(s)
Cuevas , Characidae/genética , Conducta Predatoria/fisiología , Privación de Sueño/genética , Animales , Evolución Biológica , Cruzamientos Genéticos , Femenino , Hibridación Genética , Locomoción , Masculino , México , Sitios de Carácter Cuantitativo/genética , Sueño , Vibración
11.
Mol Reprod Dev ; 82(4): 268-80, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25728684

RESUMEN

Many developmental processes have evolved through natural selection, yet in only a few cases do we understand if and how a change of developmental process produces a benefit. For example, many studies in evolutionary biology have investigated the developmental mechanisms that lead to novel structures in an animal, but only a few have addressed if these structures actually benefit the animal at the behavioral level of prey hunting and mating. As such, this review discusses an animal's behavior as the integrated functional output of its evolved morphological and physiological traits. Specifically, we focus on recent findings about the blind Mexican cavefish, Astyanax mexicanus, for which clear relationships exist between its physical traits and ecosystem. This species includes two morphotypes: an eyed surface dweller versus many conspecific types of blind cave dwellers, some of which evolved independently; all of the blind subtypes derived from eyed surface dwellers. The blind cavefish evolved under clear selection pressures: food is sparse and darkness is perpetual. Simulating the major aspects of a cave ecosystem in the laboratory is relatively easy, so we can use this species to begin resolving the relationships between evolved traits and selection pressures-relationships which are more complex for other animals models. This review discusses the recent advances in cavefish research that have helped us establish some key relationships between morphological evolution and environmental shifts.


Asunto(s)
Adaptación Biológica/fisiología , Conducta Apetitiva/fisiología , Evolución Biológica , Cuevas , Characidae/fisiología , Ambiente , Selección Genética , Conducta Sexual Animal/fisiología , Animales , Proteínas Hedgehog , Transducción de Señal
12.
J Exp Biol ; 217(Pt 6): 886-95, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24265419

RESUMEN

The characid fish species Astyanax mexicanus offers a classic comparative model for the evolution of sensory systems. Populations of this species evolved in caves and became blind while others remained in streams (i.e. surface fish) and retained a functional visual system. The flow-sensitive lateral line receptors, called superficial neuromasts, are more numerous in cavefish than in surface fish, but it is unclear whether individual neuromasts differ in sensitivity between these populations. The aims of this study were to determine whether the neuromasts in cavefish impart enhanced sensitivity relative to surface fish and to test whether this aids their ability to sense flow in the absence of visual input. Sensitivity was assessed by modeling the mechanics and hydrodynamics of a flow stimulus. This model required that we measure the dimensions of the transparent cupula of a neuromast, which was visualized with fluorescent microspheres. We found that neuromasts within the eye orbit and in the suborbital region were larger and consequently about twice as sensitive in small adult cavefish as in surface fish. Behavioral experiments found that these cavefish, but not surface fish, were attracted to a 35 Hz flow stimulus. These results support the hypothesis that the large superficial neuromasts of small cavefish aid in flow sensing. We conclude that the morphology of the lateral line could have evolved in cavefish to permit foraging in a cave environment.


Asunto(s)
Conducta Animal/fisiología , Characidae/fisiología , Sistema de la Línea Lateral/fisiología , Mecanorreceptores/fisiología , Animales , Conducta Apetitiva , Evolución Biológica , Cuevas , Characidae/anatomía & histología , Characidae/genética , Sistema de la Línea Lateral/citología , Mecanorreceptores/citología , México , Microesferas , Modelos Biológicos , Imagen Óptica , Vibración
13.
J Exp Biol ; 217(Pt 17): 3122-32, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24948636

RESUMEN

Animals respond to changes in food availability by adjusting sleep and foraging strategies to optimize their fitness. Wild populations of the fruit fly, Drosophila melanogaster, display highly variable levels of starvation resistance that are dependent on geographic location, food availability and evolutionary history. How behaviors that include sleep and feeding vary in Drosophila with increased starvation resistance is unclear. We have generated starvation-resistant flies through experimental evolution to investigate the relationship between foraging behaviors and starvation resistance. Outbred populations of D. melanogaster were selected for starvation resistance over 60 generations. This selection process resulted in flies with a threefold increase in total lipids that survive up to 18 days without food. We tested starvation-selected (S) flies for sleep and feeding behaviors to determine the effect that selection for starvation resistance has had on foraging behavior. Flies from three replicated starvation-selected populations displayed a dramatic reduction in feeding and prolonged sleep duration compared to fed control (F) populations, suggesting that modified sleep and feeding may contribute to starvation resistance. A prolonged larval developmental period contributes to the elevated energy stores present in starvation-selected flies. By preventing S larvae from feeding longer than F larvae, we were able to reduce energy stores in adult S flies to the levels seen in adult F flies, thus allowing us to control for energy storage levels. However, the reduction of energy stores in S flies fails to generate normal sleep and feeding behavior seen in F flies with similar energy stores. These findings suggest that the behavioral changes observed in S flies are due to genetic regulation of behavior rather than elevated lipid levels. Testing S-F hybrid individuals for both feeding and sleep revealed a lack of correlation between food consumption and sleep duration, indicating further independence in genetic factors underlying the sleep and feeding changes observed in S flies. Taken together, these findings provide evidence that starvation selection results in prolonged sleep and reduced feeding through a mechanism that is independent of elevated energy stores. These findings suggest that changes in both metabolic function and behavior contribute to the increase in starvation resistance seen in flies selected for starvation resistance.


Asunto(s)
Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Conducta Alimentaria/fisiología , Sueño/genética , Fenómenos Fisiológicos Nutricionales de los Animales/genética , Animales , Drosophila melanogaster/crecimiento & desarrollo , Metabolismo Energético , Larva/fisiología , Selección Genética , Sueño/fisiología , Inanición/fisiopatología
14.
BMC Biol ; 11: 82, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23844745

RESUMEN

Vibration attraction behavior (VAB) is the swimming of fish toward an oscillating object, a behavior that is likely adaptive because it increases foraging efficiency in darkness. VAB is seen in a small proportion of Astyanax surface-dwelling populations (surface fish) but is pronounced in cave-dwelling populations (cavefish). In a recent study, we identified two quantitative trait loci for VAB on Astyanax linkage groups 2 and 17. We also demonstrated that a small population of superficial neuromast sensors located within the eye orbit (EO SN) facilitate VAB, and two quantitative trait loci (QTL) were identified for EO SN that were congruent with those for VAB. Finally, we showed that both VAB and EO SN are negatively correlated with eye size, and that two (of several) QTL for eye size overlap VAB and EO SN QTLs. From these results, we concluded that the adaptive evolution of VAB and EO SN has contributed to the indirect loss of eyes in cavefish, either as a result of pleiotropy or tight physical linkage of the mutations underlying these traits. In a subsequent commentary, Borowsky argues that there is poor experimental support for our conclusions. Specifically, Borowsky states that: (1) linkage groups (LGs) 2 and 17 harbor QTL for many traits and, therefore, no evidence exists for an exclusive interaction among the overlapping VAB, EO SN and eye size QTL; (2) some of the QTL we identified are too broad (>20 cM) to support the hypothesis of correlated evolution due to pleiotropy or hitchhiking; and (3) VAB is unnecessary to explain the indirect evolution of eye-loss since the negative polarity of numerous eye QTL is consistent with direct selection against eyes. Borowsky further argues that (4) it is difficult to envision an evolutionary scenario whereby VAB and EO SN drive eye loss, since the eyes must first be reduced in order to increase the number of EO SN and, therefore, VAB. In this response, we explain why the evidence of one trait influencing eye reduction is stronger for VAB than other traits, and provide further support for a scenario whereby elaboration of VAB in surface fish may precede complete eye-loss.


Asunto(s)
Adaptación Fisiológica , Conducta Animal/fisiología , Evolución Biológica , Ceguera/fisiopatología , Ojo/fisiopatología , Peces/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Femenino , Masculino
15.
Cancer Genomics Proteomics ; 21(1): 18-29, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38151292

RESUMEN

BACKGROUND/AIM: Pancreatic cancer is one of the most lethal malignant cancers worldwide and the seventh most common cause of cancer-related death in both sexes. Herein, we analyzed open access data and discovered that expression of a gene called deoxynucleotidyltransferase terminal-interacting protein 2 (DNTTIP2) is linked to prognosis of pancreatic ductal adenocarcinoma (PDAC). We then elucidated the role of DNTTIP2 in the proliferation of pancreatic cancer cells in vitro. MATERIALS AND METHODS: A WST-8 assay, cell cycle analysis, Annexin-V staining, quantitative reverse transcription-PCR, and western blot analysis were conducted to assess cell proliferation, cell cycle, apoptosis, and expression of DNTTIP2 mRNA and protein, respectively, in DNTTIP2-depleteted MIA-PaCa-2 and PK-1 cells. RESULTS: Depletion of DNTTIP2 induced G1 arrest in MIA-PaCa-2 cells by decreasing expression of special AT-rich sequence binding protein 1 (SATB1) and cyclin-dependent kinase 6 (CDK6). In addition, depletion of DNTTIP2 induced G2 arrest in PK-1 cells by decreasing expression of CDK1. Depletion of DNTTIP2 did not induce apoptosis in MIA-PaCa-2 or PK-1 cells. CONCLUSION: DNTTIP2 is involved in proliferation of pancreatic cancer cells. Thus, DNTTIP2 is a potential target for inhibiting progression of pancreatic cancers.


Asunto(s)
Proteínas de Unión a la Región de Fijación a la Matriz , Neoplasias Pancreáticas , Femenino , Humanos , Masculino , Apoptosis/genética , Ciclo Celular/genética , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Pancreáticas/patología , Factores de Transcripción
16.
PLoS One ; 19(5): e0300793, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38748713

RESUMEN

In nature, animals must navigate to forage according to their sensory inputs. Different species use different sensory modalities to locate food efficiently. For teleosts, food emits visual, mechanical, chemical, and/or possibly weak-electrical signals, which can be detected by optic, auditory/lateral line, and olfactory/taste buds sensory systems. However, how fish respond to and use different sensory inputs when locating food, as well as the evolution of these sensory modalities, remain unclear. We examined the Mexican tetra, Astyanax mexicanus, which is composed of two different morphs: a sighted riverine (surface fish) and a blind cave morph (cavefish). Compared with surface fish, cavefish have enhanced non-visual sensory systems, including the mechanosensory lateral line system, chemical sensors comprising the olfactory system and taste buds, and the auditory system to help navigate toward food sources. We tested how visual, chemical, and mechanical stimuli evoke food-seeking behavior. In contrast to our expectations, both surface fish and cavefish did not follow a gradient of chemical stimulus (food extract) but used it as a cue for the ambient existence of food. Surface fish followed visual cues (red plastic beads and food pellets), but, in the dark, were likely to rely on mechanosensors-the lateral line and/or tactile sensor-as cavefish did. Our results indicate cavefish used a similar sensory modality to surface fish in the dark, while affinity levels to stimuli were higher in cavefish. In addition, cavefish evolved an extended circling strategy to forage, which may yield a higher chance to capture food by swimming-by the food multiple times instead of once through zigzag motion. In summary, we propose that ancestors of cavefish, similar to the modern surface fish, evolved extended food-seeking behaviors, including circling motion, to adapt to the dark.


Asunto(s)
Characidae , Conducta Alimentaria , Animales , Conducta Alimentaria/fisiología , Characidae/fisiología , Evolución Biológica , Cuevas , Señales (Psicología) , Ceguera/fisiopatología
17.
BMC Biol ; 10: 108, 2012 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-23270452

RESUMEN

BACKGROUND: How and why animals lose eyesight during adaptation to the dark and food-limited cave environment has puzzled biologists since the time of Darwin. More recently, several different adaptive hypotheses have been proposed to explain eye degeneration based on studies in the teleost Astyanax mexicanus, which consists of blind cave-dwelling (cavefish) and sighted surface-dwelling (surface fish) forms. One of these hypotheses is that eye regression is the result of indirect selection for constructive characters that are negatively linked to eye development through the pleiotropic effects of Sonic Hedgehog (SHH) signaling. However, subsequent genetic analyses suggested that other mechanisms also contribute to eye regression in Astyanax cavefish. Here, we introduce a new approach to this problem by investigating the phenotypic and genetic relationships between a suite of non-visual constructive traits and eye regression. RESULTS: Using quantitative genetic analysis of crosses between surface fish, the Pachón cavefish population and their hybrid progeny, we show that the adaptive vibration attraction behavior (VAB) and its sensory receptors, superficial neuromasts (SN) specifically found within the cavefish eye orbit (EO), are genetically correlated with reduced eye size. The quantitative trait loci (QTL) for these three traits form two clusters of congruent or overlapping QTL on Astyanax linkage groups (LG) 2 and 17, but not at the shh locus on LG 13. Ablation of EO SN in cavefish demonstrated a major role for these sensory receptors in VAB expression. Furthermore, experimental induction of eye regression in surface fish via shh overexpression showed that the absence of eyes was insufficient to promote the appearance of VAB or EO SN. CONCLUSIONS: We conclude that natural selection for the enhancement of VAB and EO SN indirectly promotes eye regression in the Pachón cavefish population through an antagonistic relationship involving genetic linkage or pleiotropy among the genetic factors underlying these traits. This study demonstrates a trade-off between the evolution of a non-visual sensory system and eye regression during the adaptive evolution of Astyanax to the cave environment.


Asunto(s)
Adaptación Fisiológica , Conducta Animal/fisiología , Evolución Biológica , Ceguera/fisiopatología , Ojo/fisiopatología , Peces/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Recuento de Células , Mapeo Cromosómico , Cruzamientos Genéticos , Ojo/patología , Femenino , Proteínas Hedgehog/metabolismo , Escala de Lod , Masculino , Modelos Biológicos , Órbita/patología , Tamaño de los Órganos , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable , Vibración
18.
PLoS One ; 18(4): e0284820, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37099525

RESUMEN

Mapper, a topological algorithm, is frequently used as an exploratory tool to build a graphical representation of data. This representation can help to gain a better understanding of the intrinsic shape of high-dimensional genomic data and to retain information that may be lost using standard dimension-reduction algorithms. We propose a novel workflow to process and analyze RNA-seq data from tumor and healthy subjects integrating Mapper, differential gene expression, and spectral shape analysis. Precisely, we show that a Gaussian mixture approximation method can be used to produce graphical structures that successfully separate tumor and healthy subjects, and produce two subgroups of tumor subjects. A further analysis using DESeq2, a popular tool for the detection of differentially expressed genes, shows that these two subgroups of tumor cells bear two distinct gene regulations, suggesting two discrete paths for forming lung cancer, which could not be highlighted by other popular clustering methods, including t-distributed stochastic neighbor embedding (t-SNE). Although Mapper shows promise in analyzing high-dimensional data, tools to statistically analyze Mapper graphical structures are limited in the existing literature. In this paper, we develop a scoring method using heat kernel signatures that provides an empirical setting for statistical inferences such as hypothesis testing, sensitivity analysis, and correlation analysis.


Asunto(s)
Algoritmos , Genómica , Humanos , RNA-Seq , Regulación de la Expresión Génica , Análisis por Conglomerados
19.
bioRxiv ; 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37398421

RESUMEN

In nature, animals must navigate to forage according to their sensory inputs. Different species use different sensory modalities to locate food efficiently. For teleosts, food emits visual, mechanical, chemical, and/or possibly weak-electrical signals, which can be detected by optic, auditory/lateral line, and olfactory/taste buds sensory systems. However, how fish respond to and use different sensory inputs when locating food, as well as the evolution of these sensory modalities, remain unclear. We examined the Mexican tetra, Astyanax mexicanus, which is composed of two different morphs: a sighted riverine (surface fish) and a blind cave morph (cavefish). Compared with surface fish, cavefish have enhanced non-visual sensory systems, including the mechanosensory lateral line system, chemical sensors comprising the olfactory system and taste buds, and the auditory system to help navigate toward food sources. We tested how visual, chemical, and mechanical stimuli evoke food-seeking behavior. In contrast to our expectations, both surface fish and cavefish did not follow a gradient of chemical stimulus (food extract) but used it as a cue for the ambient existence of food. Surface fish followed visual cues (red plastic beads and food pellets), but, in the dark, were likely to rely on mechanosensors-the lateral line and/or tactile sensor-as cavefish did. Our results indicate cavefish used similar sensory modality to surface fish in the dark, while adherence levels to stimuli were higher in cavefish. In addition, cavefish evolved an extended circling strategy to capture food, which may yield a higher chance to capture food by swimming-by the food multiple times instead of once through zigzag motion. In summary, we propose ancestors of cavefish similar to surface fish may have needed little modification in food-seeking strategy to adapt to the dark.

20.
Nat Cell Biol ; 7(3): 270-7, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15723051

RESUMEN

A polarity complex of PAR-3, PAR-6 and atypical protein kinase C (aPKC) functions in various cell-polarization events, including neuron specification. The small GTPase Cdc42 binds to PAR-6 and regulates cell polarity. However, little is known about the downstream signals of the Cdc42-PAR protein complex. Here, we found that PAR-3 directly interacted with STEF/Tiam1, which are Rac-specific guanine nucleotide-exchange factors, and that STEF formed a complex with PAR-3-aPKC-PAR-6-Cdc42-GTP. Cdc42 induces lamellipodia in a Rac-dependent manner in N1E-115 neuroblastoma cells. Disruption of Cdc42-PAR-6 or PAR-3-STEF binding inhibited Cdc42-induced lamellipodia but not filopodia. The isolated STEF-binding PAR-3 fragment was sufficient to induce lamellipodia independently of Cdc42 and PAR-6. PAR-3 is required for Cdc42-induced Rac activation, but is not essential for lamellipodia formation itself. In cultured hippocampal neurons, STEF accumulated at the tip of the growing axon and colocalized with PAR-3. The spatio-temporal activation and signalling of Cdc42-PAR-6-PAR-3-STEF/Tiam1-Rac seem to be involved in neurite growth and axon specification. We propose that the PAR-6-PAR-3 complex mediates Cdc42-induced Rac activation by means of STEF/Tiam1, and that this process seems to be required for the establishment of neuronal polarity.


Asunto(s)
Proteínas Portadoras/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas/fisiología , Proteína de Unión al GTP cdc42/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Animales , Axones/metabolismo , Células COS , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , ADN Complementario/metabolismo , Activación Enzimática , Glutatión Transferasa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Humanos , Inmunoprecipitación , Microscopía Fluorescente , Proteínas del Tejido Nervioso , Neuronas/metabolismo , Plásmidos/metabolismo , Estructura Terciaria de Proteína , Proteínas/metabolismo , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA