Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Nature ; 615(7952): 535-540, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859551

RESUMEN

Energy transfer from light-harvesting ketocarotenoids to the light-driven proton pump xanthorhodopsins has been previously demonstrated in two unique cases: an extreme halophilic bacterium1 and a terrestrial cyanobacterium2. Attempts to find carotenoids that bind and transfer energy to abundant rhodopsin proton pumps3 from marine photoheterotrophs have thus far failed4-6. Here we detected light energy transfer from the widespread hydroxylated carotenoids zeaxanthin and lutein to the retinal moiety of xanthorhodopsins and proteorhodopsins using functional metagenomics combined with chromophore extraction from the environment. The light-harvesting carotenoids transfer up to 42% of the harvested energy in the violet- or blue-light range to the green-light absorbing retinal chromophore. Our data suggest that these antennas may have a substantial effect on rhodopsin phototrophy in the world's lakes, seas and oceans. However, the functional implications of our findings are yet to be discovered.


Asunto(s)
Organismos Acuáticos , Procesos Fototróficos , Bombas de Protones , Rodopsinas Microbianas , Organismos Acuáticos/metabolismo , Organismos Acuáticos/efectos de la radiación , Bacterias/metabolismo , Bacterias/efectos de la radiación , Carotenoides/metabolismo , Color , Cianobacterias/metabolismo , Cianobacterias/efectos de la radiación , Procesos Heterotróficos/efectos de la radiación , Luz , Océanos y Mares , Procesos Fototróficos/efectos de la radiación , Bombas de Protones/metabolismo , Bombas de Protones/efectos de la radiación , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/efectos de la radiación , Zeaxantinas/metabolismo , Zeaxantinas/efectos de la radiación , Luteína/metabolismo , Luteína/efectos de la radiación , Metagenoma , Lagos
2.
Proc Natl Acad Sci U S A ; 120(39): e2307638120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37722052

RESUMEN

Photosynthetic carbon (C) fixation by phytoplankton in the Southern Ocean (SO) plays a critical role in regulating air-sea exchange of carbon dioxide and thus global climate. In the SO, photosynthesis (PS) is often constrained by low iron, low temperatures, and low but highly variable light intensities. Recently, proton-pumping rhodopsins (PPRs) were identified in marine phytoplankton, providing an alternate iron-free, light-driven source of cellular energy. These proteins pump protons across cellular membranes through light absorption by the chromophore retinal, and the resulting pH energy gradient can then be used for active membrane transport or for synthesis of adenosine triphosphate. Here, we show that PPR is pervasive in Antarctic phytoplankton, especially in iron-limited regions. In a model SO diatom, we found that it was localized to the vacuolar membrane, making the vacuole a putative alternative phototrophic organelle for light-driven production of cellular energy. Unlike photosynthetic C fixation, which decreases substantially at colder temperatures, the proton transport activity of PPR was unaffected by decreasing temperature. Cellular PPR levels in cultured SO diatoms increased with decreasing iron concentrations and energy production from PPR photochemistry could substantially augment that of PS, especially under high light intensities, where PS is often photoinhibited. PPR gene expression and high retinal concentrations in phytoplankton in SO waters support its widespread use in polar environments. PPRs are an important adaptation of SO phytoplankton to growth and survival in their cold, iron-limited, and variable light environment.


Asunto(s)
Diatomeas , Rodopsina , Rodopsina/genética , Fitoplancton/genética , Protones , Regiones Antárticas , Transporte Iónico , Diatomeas/genética
3.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35197289

RESUMEN

Light-driven chloride-pumping rhodopsins actively transport anions, including various halide ions, across cell membranes. Recent studies using time-resolved serial femtosecond crystallography (TR-SFX) have uncovered the structural changes and ion transfer mechanisms in light-driven cation-pumping rhodopsins. However, the mechanism by which the conformational changes pump an anion to achieve unidirectional ion transport, from the extracellular side to the cytoplasmic side, in anion-pumping rhodopsins remains enigmatic. We have collected TR-SFX data of Nonlabens marinus rhodopsin-3 (NM-R3), derived from a marine flavobacterium, at 10-µs and 1-ms time points after photoexcitation. Our structural analysis reveals the conformational alterations during ion transfer and after ion release. Movements of the retinal chromophore initially displace a conserved tryptophan to the cytoplasmic side of NM-R3, accompanied by a slight shift of the halide ion bound to the retinal. After ion release, the inward movements of helix C and helix G and the lateral displacements of the retinal block access to the extracellular side of NM-R3. Anomalous signal data have also been obtained from NM-R3 crystals containing iodide ions. The anomalous density maps provide insight into the halide binding site for ion transfer in NM-R3.


Asunto(s)
Canales de Cloruro/química , Rayos Láser , Canales de Cloruro/metabolismo , Cristalografía , Citoplasma/metabolismo , Transporte Iónico , Luz , Conformación Proteica , Rayos X
4.
Chem Pharm Bull (Tokyo) ; 71(2): 154-164, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36724978

RESUMEN

Rhodopsins are transmembrane proteins with retinal chromophores that are involved in photo-energy conversion and photo-signal transduction in diverse organisms. In this study, we newly identified and characterized a rhodopsin from a thermophilic bacterium, Bellilinea sp. Recombinant Escherichia coli cells expressing the rhodopsin showed light-induced alkalization of the medium only in the presence of sodium ions (Na+), and the alkalization signal was enhanced by addition of a protonophore, indicating an outward Na+ pump function across the cellular membrane. Thus, we named the protein Bellilinea Na+-pumping rhodopsin, BeNaR. Of note, its Na+-pumping activity is significantly greater than that of the known Na+-pumping rhodopsin, KR2. We further characterized its photochemical properties as follows: (i) Visible spectroscopy and HPLC revealed that BeNaR has an absorption maximum at 524 nm with predominantly (>96%) the all-trans retinal conformer. (ii) Time-dependent thermal denaturation experiments revealed that BeNaR showed high thermal stability. (iii) The time-resolved flash-photolysis in the nanosecond to millisecond time domains revealed the presence of four kinetically distinctive photointermediates, K, L, M and O. (iv) Mutational analysis revealed that Asp101, which acts as a counterion, and Asp230 around the retinal were essential for the Na+-pumping activity. From the results, we propose a model for the outward Na+-pumping mechanism of BeNaR. The efficient Na+-pumping activity of BeNaR and its high stability make it a useful model both for ion transporters and optogenetics tools.


Asunto(s)
Rodopsina , ATPasa Intercambiadora de Sodio-Potasio , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Rodopsina/química , Rodopsina/metabolismo , Transporte Iónico , Bacterias/metabolismo , Iones , Sodio/química , Sodio/metabolismo , Luz
5.
Proc Natl Acad Sci U S A ; 116(41): 20574-20583, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31548428

RESUMEN

Giant viruses are remarkable for their large genomes, often rivaling those of small bacteria, and for having genes thought exclusive to cellular life. Most isolated to date infect nonmarine protists, leaving their strategies and prevalence in marine environments largely unknown. Using eukaryotic single-cell metagenomics in the Pacific, we discovered a Mimiviridae lineage of giant viruses, which infects choanoflagellates, widespread protistan predators related to metazoans. The ChoanoVirus genomes are the largest yet from pelagic ecosystems, with 442 of 862 predicted proteins lacking known homologs. They are enriched in enzymes for modifying organic compounds, including degradation of chitin, an abundant polysaccharide in oceans, and they encode 3 divergent type-1 rhodopsins (VirR) with distinct evolutionary histories from those that capture sunlight in cellular organisms. One (VirRDTS) is similar to the only other putative rhodopsin from a virus (PgV) with a known host (a marine alga). Unlike the algal virus, ChoanoViruses encode the entire pigment biosynthesis pathway and cleavage enzyme for producing the required chromophore, retinal. We demonstrate that the rhodopsin shared by ChoanoViruses and PgV binds retinal and pumps protons. Moreover, our 1.65-Å resolved VirRDTS crystal structure and mutational analyses exposed differences from previously characterized type-1 rhodopsins, all of which come from cellular organisms. Multiple VirR types are present in metagenomes from across surface oceans, where they are correlated with and nearly as abundant as a canonical marker gene from Mimiviridae Our findings indicate that light-dependent energy transfer systems are likely common components of giant viruses of photosynthetic and phagotrophic unicellular marine eukaryotes.


Asunto(s)
Evolución Biológica , Eucariontes/virología , Virus Gigantes/genética , Phycodnaviridae/genética , Rodopsina/metabolismo , Agua de Mar/virología , Proteínas Virales/metabolismo , Ecosistema , Genoma Viral , Virus Gigantes/clasificación , Metagenómica , Océanos y Mares , Phycodnaviridae/clasificación , Filogenia , Protones , Rodopsina/química , Rodopsina/genética , Proteínas Virales/química , Proteínas Virales/genética
6.
Nature ; 521(7550): 48-53, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25849775

RESUMEN

Krokinobacter eikastus rhodopsin 2 (KR2) is the first light-driven Na(+) pump discovered, and is viewed as a potential next-generation optogenetics tool. Since the positively charged Schiff base proton, located within the ion-conducting pathway of all light-driven ion pumps, was thought to prohibit the transport of a non-proton cation, the discovery of KR2 raised the question of how it achieves Na(+) transport. Here we present crystal structures of KR2 under neutral and acidic conditions, which represent the resting and M-like intermediate states, respectively. Structural and spectroscopic analyses revealed the gating mechanism, whereby the flipping of Asp116 sequesters the Schiff base proton from the conducting pathway to facilitate Na(+) transport. Together with the structure-based engineering of the first light-driven K(+) pumps, electrophysiological assays in mammalian neurons and behavioural assays in a nematode, our studies reveal the molecular basis for light-driven non-proton cation pumps and thus provide a framework that may advance the development of next-generation optogenetics.


Asunto(s)
Flavobacteriaceae/química , Bombas Iónicas/química , Bombas Iónicas/efectos de la radiación , Luz , Rodopsina/química , Rodopsina/efectos de la radiación , Sodio/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Bombas Iónicas/genética , Bombas Iónicas/metabolismo , Transporte Iónico/genética , Transporte Iónico/efectos de la radiación , Modelos Biológicos , Modelos Moleculares , Mutagénesis/genética , Optogenética , Potasio/metabolismo , Conformación Proteica , Ingeniería de Proteínas , Retinaldehído/química , Retinaldehído/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Bases de Schiff , Relación Estructura-Actividad
7.
Biochemistry ; 58(26): 2934-2943, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31150215

RESUMEN

Many microorganisms express rhodopsins, pigmented membrane proteins capable of absorbing sunlight and harnessing that energy for important biological functions such as ATP synthesis and phototaxis. Microbial rhodopsins that have been discovered to date are categorized as type-1 rhodopsins. Interestingly, researchers have very recently unveiled a new microbial rhodopsin family named the heliorhodopsins, which are phylogenetically distant from type-1 rhodopsins. Among them, only heliorhodopsin-48C12 (HeR-48C12) from a Gram-positive eubacterium has been photochemically characterized [Pushkarev, A., et al. (2018) Nature 558, 595-599]. In this study, we photochemically characterize a purple-colored heliorhodopsin from Gram-negative eubacterium Bellilinea caldifistulae (BcHeR) as a second example and identify which properties are or are not conserved between BcHeR and HeR-48C12. A series of photochemical measurements revealed several conserved properties between them, including a visible absorption spectrum with a maximum at around 550 nm, the lack of ion-transport activity, and the existence of a second-order O-like intermediate during the photocycle that may activate an unidentified biological function. In contrast, as a property that is not conserved, although HeR-48C12 shows the light adaptation state of retinal, BcHeR showed the same retinal configuration under both dark- and light-adapted conditions. These comparisons of photochemical properties between BcHeR and HeR-48C12 are an important first step toward understanding the nature and functional role of heliorhodopsins.


Asunto(s)
Proteínas Bacterianas/química , Chloroflexi/química , Rodopsinas Microbianas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Chloroflexi/genética , Bacterias Gramnegativas/química , Bacterias Gramnegativas/genética , Luz , Procesos Fotoquímicos , Filogenia , Rodopsinas Microbianas/genética
8.
Environ Microbiol ; 21(2): 648-666, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30565818

RESUMEN

The taxonomy of marine and non-marine organisms rarely overlap, but the mechanisms underlying this distinction are often unknown. Here, we predicted three major ocean-to-land transitions in the evolutionary history of Flavobacteriaceae, a family known for polysaccharide and peptide degradation. These unidirectional transitions were associated with repeated losses of marine signature genes and repeated gains of non-marine adaptive genes. This included various Na+ -dependent transporters, osmolyte transporters and glycoside hydrolases (GH) for sulfated polysaccharide utilization in marine descendants, and in non-marine descendants genes for utilizing the land plant material pectin and genes facilitating terrestrial host interactions. The K+ scavenging ATPase was repeatedly gained whereas the corresponding low-affinity transporter repeatedly lost upon transitions, reflecting K+ ions are less available to non-marine bacteria. Strikingly, the central metabolism Na+ -translocating NADH: quinone dehydrogenase gene was repeatedly gained in marine descendants, whereas the H+ -translocating counterpart was repeatedly gained in non-marine lineages. Furthermore, GH genes were depleted in isolates colonizing animal hosts but abundant in bacteria inhabiting other non-marine niches; thus relative abundances of GH versus peptidase genes among Flavobacteriaceae lineages were inconsistent with the marine versus non-marine dichotomy. We suggest that phylogenomic analyses can cast novel light on mechanisms explaining the distribution and ecology of key microbiome components.


Asunto(s)
Evolución Biológica , Ecosistema , Flavobacteriaceae/genética , Adaptación Fisiológica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Flavobacteriaceae/clasificación , Flavobacteriaceae/enzimología , Flavobacteriaceae/fisiología , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Pectinas/metabolismo , Filogenia , Polisacáridos/metabolismo
9.
Int J Syst Evol Microbiol ; 68(9): 2872-2877, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30016227

RESUMEN

A novel Gram-negative bacterium, designated 4G11T, was isolated from the sea surface microlayer of a marine inlet. On the basis of 16S rRNA gene sequence analysis, the strain showed the closest similarity to Amylibacter ulvae KCTC 32465T (99.0 %). However, DNA-DNA hybridization values showed low DNA relatedness between strain 4G11T and its close phylogenetic neighbours, Amylibacter marinus NBRC 110140T (8.0±0.4 %) and Amylibacter ulvae KCTC 32465T (52.9±0.9 %). Strain 4G11T had C18 : 1, C16 : 0 and C18 : 2 as the major fatty acids. The only isoprenoid quinone detected for strain 4G11T was ubiquinone-10. The major polar lipids were phosphatidylglycerol, phosphatidylcholine, one unidentified polar lipid, one unidentified phospholipid and one unidentified aminolipid. The DNA G+C content of strain 4G11T was 50.0 mol%. Based on phenotypic and chemotaxonomic characteristics and analysis of the 16S rRNA gene sequence, the novel strain should be assigned to a novel species, for which the name Amylibacter kogurei sp. nov. is proposed. The type strain of Amylibacter kogurei is 4G11T (KY463497=KCTC 52506T=NBRC 112428T).


Asunto(s)
Filogenia , Rhodobacteraceae/clasificación , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , Bahías , ADN Bacteriano/genética , Ácidos Grasos/química , Japón , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Rhodobacteraceae/genética , Rhodobacteraceae/aislamiento & purificación , Análisis de Secuencia de ADN , Ubiquinona/química
10.
Phys Chem Chem Phys ; 20(5): 3172-3183, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29034950

RESUMEN

A new group of microbial rhodopsins named xenorhodopsins (XeR), which are closely related to the cyanobacterial Anabaena sensory rhodopsin, show a light-driven "inward" proton transport activity, as reported for one representative of this group from Parvularcula oceani (PoXeR). In this study, we functionally and spectroscopically characterized a new member of the XeR clade from a marine bacterium Rubricoccus marinus SG-29T (RmXeR). Escherichia coli cells expressing recombinant RmXeR showed a light-induced alkalization of the cell suspension, which was strongly impaired by a protonophore, suggesting that RmXeR is a light-driven "inward" proton pump as is PoXeR. The spectroscopic properties of purified RmXeR were investigated and compared with those of PoXeR and a light-driven "outward" proton pump, bacteriorhodopsin (BR) from the archaeon Halobacterium salinarum. Action spectroscopy revealed that RmXeR with all-trans retinal is responsible for the light-driven inward proton transport activity, but not with 13-cis retinal. From pH titration experiments and mutational analysis, we estimated the pKa values for the protonated Schiff base of the retinal chromophore and its counterion as 11.1 ± 0.07 and 2.1 ± 0.07, respectively. Of note, the direction of both the retinal composition change upon light-dark adaptation and the acid-induced spectral shift was opposite that of BR, which is presumably related to the opposite directions of ion transport (from outside to inside for RmXeR and from inside to outside for BR). Flash photolysis experiments revealed the appearances of three intermediates (L, M and O) during the photocycle. The proton uptake and release were coincident with the formation and decay of the M intermediate, respectively. Together with associated findings from other microbial rhodopsins, we propose a putative model for the inward proton transport mechanism of RmXeR.


Asunto(s)
Rodopsinas Microbianas/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Escherichia coli , Halobacterium/metabolismo , Concentración de Iones de Hidrógeno , Transporte Iónico/efectos de la radiación , Luz , Filogenia , Protones , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Retinaldehído/química , Retinaldehído/metabolismo , Rodopsinas Microbianas/clasificación , Rodopsinas Microbianas/genética , Rhodothermus , Bases de Schiff/química , Bases de Schiff/metabolismo , Espectrofotometría
11.
J Biol Chem ; 291(34): 17488-17495, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27365396

RESUMEN

The light-driven inward chloride ion-pumping rhodopsin Nonlabens marinus rhodopsin-3 (NM-R3), from a marine flavobacterium, belongs to a phylogenetic lineage distinct from the halorhodopsins known as archaeal inward chloride ion-pumping rhodopsins. NM-R3 and halorhodopsin have distinct motif sequences that are important for chloride ion binding and transport. In this study, we present the crystal structure of a new type of light-driven chloride ion pump, NM-R3, at 1.58 Å resolution. The structure revealed the chloride ion translocation pathway and showed that a single chloride ion resides near the Schiff base. The overall structure, chloride ion-binding site, and translocation pathway of NM-R3 are different from those of halorhodopsin. Unexpectedly, this NM-R3 structure is similar to the crystal structure of the light-driven outward sodium ion pump, Krokinobacter eikastus rhodopsin 2. Structural and mutational analyses of NM-R3 revealed that most of the important amino acid residues for chloride ion pumping exist in the ion influx region, located on the extracellular side of NM-R3. In contrast, on the opposite side, the cytoplasmic regions of K. eikastus rhodopsin 2 were reportedly important for sodium ion pumping. These results provide new insight into ion selection mechanisms in ion pumping rhodopsins, in which the ion influx regions of both the inward and outward pumps are important for their ion selectivities.


Asunto(s)
Proteínas Bacterianas/química , Canales de Cloruro/química , Flavobacteriaceae/química , Halorrodopsinas/química , Luz , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Cristalografía por Rayos X , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Halorrodopsinas/genética , Halorrodopsinas/metabolismo , Dominios Proteicos , Relación Estructura-Actividad
12.
J Am Chem Soc ; 139(12): 4376-4389, 2017 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-28257611

RESUMEN

In organisms, ion transporters play essential roles in the generation and dissipation of ion gradients across cell membranes. Microbial rhodopsins selectively transport cognate ions using solar energy, in which the substrate ions identified to date have been confined to monovalent ions such as H+, Na+, and Cl-. Here we report a novel rhodopsin from the cyanobacterium Synechocystis sp. PCC 7509, which inwardly transports a polyatomic divalent sulfate ion, SO42-, with changes of its spectroscopic properties in both unphotolyzed and photolyzed states. Upon illumination, cells expressing the novel rhodopsin, named Synechocystis halorhodopsin (SyHR), showed alkalization of the medium only in the presence of Cl- or SO42-. That alkalization signal was enhanced by addition of a protonophore, indicating an inward transport of Cl- and SO42- with a subsequent secondary inward H+ movement across the membrane. The anion binding to SyHR was suggested by absorption spectral shifts from 542 to 536 nm for Cl- and from 542 to 556 nm for SO42-, and the affinities of Cl- and SO42- were estimated as 0.112 and 5.81 mM, respectively. We then performed time-resolved spectroscopic measurements ranging from femtosecond to millisecond time domains to elucidate the structure and structural changes of SyHR during the photoreaction. Based on the results, we propose a photocycle model for SyHR in the absence or presence of substrate ions with the timing of their uptake and release. Thus, we demonstrate SyHR as the first light-driven polyatomic divalent anion (SO42-) transporter and report its spectroscopic characteristics.


Asunto(s)
Luz , Rodopsinas Microbianas/metabolismo , Sulfatos/metabolismo , Synechocystis/química , Aniones/química , Aniones/metabolismo , Rodopsinas Microbianas/química , Espectrofotometría Ultravioleta , Sulfatos/química , Synechocystis/metabolismo
13.
Int J Syst Evol Microbiol ; 67(7): 2199-2204, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28699854

RESUMEN

A rod-shaped, pale yellow-pigmented, aerobic, Gram-staining-negative strain with gliding motility, designated as strain SK-16T, was isolated from the coastal surface water of a semi-enclosed coastal inlet in Misaki, Japan. Analysis of 16S rRNA gene sequences revealed that SK-16T represented a member of the family Flavobacteriaceae and was closely related to the genus Algibacter, with sequence similarities ranging from 95.9 to 94.3 % to the type strains of species of the genus Algibacter. The major cellular fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH, iso-C15 : 0 G and iso-C15 : 0 3-OH. Major polar lipids were phosphatidylethanolamine, an aminophospholipid and an unidentified phospholipid. The DNA G+C content of SK-16T was 32.3 mol% and MK-6 was the only predominant isoprenoid quinone. On the basis of the results of phenotypic, genotypic, chemotaxonomic and phylogenetic studies, it was suggested that SK-16T represents a novel species within the genus Algibacter, with the newly proposed name Algibacteraquaticus. The type strain is SK-16T (=NBRC 110220T=KCTC 32974T).


Asunto(s)
Flavobacteriaceae/clasificación , Filogenia , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Flavobacteriaceae/genética , Flavobacteriaceae/aislamiento & purificación , Japón , Fosfolípidos/química , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
14.
Proc Natl Acad Sci U S A ; 111(18): 6732-7, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24706784

RESUMEN

Light-activated, ion-pumping rhodopsins are broadly distributed among many different bacteria and archaea inhabiting the photic zone of aquatic environments. Bacterial proton- or sodium-translocating rhodopsins can convert light energy into a chemiosmotic force that can be converted into cellular biochemical energy, and thus represent a widespread alternative form of photoheterotrophy. Here we report that the genome of the marine flavobacterium Nonlabens marinus S1-08(T) encodes three different types of rhodopsins: Nonlabens marinus rhodopsin 1 (NM-R1), Nonlabens marinus rhodopsin 2 (NM-R2), and Nonlabens marinus rhodopsin 3 (NM-R3). Our functional analysis demonstrated that NM-R1 and NM-R2 are light-driven outward-translocating H(+) and Na(+) pumps, respectively. Functional analyses further revealed that the light-activated NM-R3 rhodopsin pumps Cl(-) ions into the cell, representing the first chloride-pumping rhodopsin uncovered in a marine bacterium. Phylogenetic analysis revealed that NM-R3 belongs to a distinct phylogenetic lineage quite distant from archaeal inward Cl(-)-pumping rhodopsins like halorhodopsin, suggesting that different types of chloride-pumping rhodopsins have evolved independently within marine bacterial lineages. Taken together, our data suggest that similar to haloarchaea, a considerable variety of rhodopsin types with different ion specificities have evolved in marine bacteria, with individual marine strains containing as many as three functionally different rhodopsins.


Asunto(s)
Cloruros/metabolismo , Flavobacteriaceae/metabolismo , Bombas Iónicas/clasificación , Rodopsina/metabolismo , Evolución Molecular , Flavobacteriaceae/genética , Flavobacteriaceae/efectos de la radiación , Genoma Bacteriano , Bombas Iónicas/genética , Bombas Iónicas/efectos de la radiación , Luz , Datos de Secuencia Molecular , Filogenia , Rodopsina/genética
15.
BMC Genomics ; 17: 53, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26764021

RESUMEN

BACKGROUND: The Great East Japan Earthquake of 2011 triggered large tsunami waves, which flooded broad areas of land along the Pacific coast of eastern Japan and changed the soil environment drastically. However, the microbial characteristics of tsunami-affected soil at the genomic level remain largely unknown. In this study, we isolated microbes from a soil sample using general low-nutrient and seawater-based media to investigate microbial characteristics in tsunami-affected soil. RESULTS: As expected, a greater proportion of strains isolated from the tsunami-affected soil than the unaffected soil grew in the seawater-based medium. Cultivable strains in both the general low-nutrient and seawater-based media were distributed in the genus Arthrobacter. Most importantly, whole-genome sequencing of four of the isolated Arthrobacter strains revealed independent losses of siderophore-synthesis genes from their genomes. Siderophores are low-molecular-weight, iron-chelating compounds that are secreted for iron uptake; thus, the loss of siderophore-synthesis genes indicates that these strains have adapted to environments with high-iron concentrations. Indeed, chemical analysis confirmed the investigated soil samples to be rich in iron, and culture experiments confirmed weak cultivability of some of these strains in iron-limited media. Furthermore, metagenomic analyses demonstrated over-representation of denitrification-related genes in the tsunami-affected soil sample, as well as the presence of pathogenic and marine-living genera and genes related to salt-tolerance. CONCLUSIONS: Collectively, the present results would provide an example of microbial characteristics of soil disturbed by the tsunami, which may give an insight into microbial adaptation to drastic environmental changes. Further analyses on microbial ecology after a tsunami are envisioned to develop a deeper understanding of the recovery processes of terrestrial microbial ecosystems.


Asunto(s)
Arthrobacter/genética , Genómica , Metagenómica , Microbiología del Suelo , Terremotos , Ecosistema , Japón , Tsunamis
16.
Int J Syst Evol Microbiol ; 65(12): 4850-4856, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26443199

RESUMEN

A Gram-stain-negative, aerobic, proteorhodopsin-containing, orange, rod-shaped bacterium, designated SAORIC-234T, was isolated from deep seawater in the Pacific Ocean. 16S rRNA gene sequence analysis revealed that the strain could be affiliated with the family Flavobacteriaceae of the phylum Bacteroidetes and shared less than 94.6 % similarity with other species of the family with validly published names. The phenotypic characteristics of this novel isolate, such as growth properties and enzyme activities, could be differentiated from those of other species. The strain was non-motile, oxidase-positive and catalase-negative. The G+C content of the genomic DNA was determined to be 34.8 mol% and menaquinone-6 (MK-6) was the predominant isoprenoid quinone. The predominant fatty acids were iso-C15 : 0, iso-C15 : 1 G, iso-C16 : 0 3-OH, iso-C17 : 0 3-OH and iso-C15 : 0 3-OH. The major polar lipids comprised phosphatidylethanolamine, three unknown aminolipids and three unknown lipids. On the basis of the taxonomic data collected in this study, it was concluded that strain SAORIC-234T represents a novel genus and species in the family Flavobacteriaceae, for which the name Aurantivirga profunda gen. nov., sp. nov. is proposed. The type strain of the type species, Aurantivirga profunda sp. nov., is SAORIC-234T ( = NBRC 110606T = KACC 18400T).


Asunto(s)
Flavobacteriaceae/clasificación , Filogenia , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Flavobacteriaceae/genética , Flavobacteriaceae/aislamiento & purificación , Datos de Secuencia Molecular , Océano Pacífico , Fosfatidiletanolaminas/química , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
17.
Curr Microbiol ; 70(4): 514-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25487119

RESUMEN

A strictly aerobic, Gram-negative, beige-pigmented, short-rod-shaped, non-motile and chemoheterotrophic bacteria, designated K2-48(T) was isolated from seawater collected in the Western North Pacific Ocean near Japan. Preliminary analysis based on the 16S rRNA gene sequence revealed that the novel isolate was affiliated with the family Oceanospirillaceae within the class Gammaproteobacteria and that it showed the highest sequence similarity (93.7 %) to Neptunomonas qingdaonensis P10-2-4(T). The strain could be differentiated phenotypically from recognized members of the family Oceanospirillaceae. The major fatty acids of strain K2-48(T) were identified as summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH) and C16:0 as defined by the MIDI system. The DNA G+C content was determined to be 43.2 mol%, the major respiratory quinone was identified as ubiquinone 9 and a polar lipid profile was present consisting of phosphatidylethanolamine, a phosphatidylglycerol and an unidentified phospolipid. On the basis of polyphasic taxonomic studies, it was concluded that strain K2-48(T) represents a novel genus sp. We propose the name Pelagitalea pacifica gen. nov., sp. nov. for this strain; its type strain is K2-48(T) (=KCCM 90119(T)).


Asunto(s)
Oceanospirillaceae/clasificación , Oceanospirillaceae/aislamiento & purificación , Agua de Mar/microbiología , Organismos Acuáticos/clasificación , Organismos Acuáticos/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , Análisis por Conglomerados , Citosol/química , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Ácidos Grasos/análisis , Japón , Locomoción , Datos de Secuencia Molecular , Oceanospirillaceae/genética , Oceanospirillaceae/fisiología , Océano Pacífico , Fosfolípidos/análisis , Filogenia , Pigmentos Biológicos/metabolismo , Quinonas/análisis , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
18.
Sci Total Environ ; 930: 172798, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38688366

RESUMEN

Seagrass meadows produce organic carbon and deposit it on the seabed through the decaying process. Microbial activity is closely related to the process of eelgrass death and collapse. We investigated the microbial community structure of eelgrass during the eelgrass decomposition process by using a microcosm containing raw seawater and excised eelgrass leaves collected from a Zostera marina bed in Futtsu, Chiba Prefecture, Japan. The fast-growing microbes (i.e., Alphaproteobacteria, Gammaproteobacteria, and Flavobacteriia) rapidly adhered to the eelgrass leaf surface and proliferated in the first two weeks but gradually decreased the relative abundance as the months moved on. On the other hand, the slow-growing microbes (i.e., Cytophagia, Anaerolineae, Thaumarchaeota, and Actinobacteria) became predominant over the eelgrass surface late in the culture experiment (120, 180 days). The fast-growing groups of Gammaproteobacteria and Flavobacteriia appear to be closely related to the initial decomposition of eelgrass, especially the rapid decomposition of leaf-derived biopolymers. Changes in nitrogen content due to the bacterial rapid consumption of readily degradable organic carbon induced changes in the community structure at the early stage of eelgrass decomposition. In addition, shifts in the C/N ratio were driven by microbial community changes during later decomposition phases.


Asunto(s)
Biodegradación Ambiental , Microbiota , Zosteraceae , Zosteraceae/microbiología , Japón , Agua de Mar/microbiología , Bacterias/metabolismo , Bacterias/clasificación
19.
Microbiol Resour Announc ; 13(3): e0003824, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38364092

RESUMEN

Here, we present the draft genome sequences of three Croceitalea sp. strains containing microbial rhodopsins, isolated from the Japanese coastal sea surface microlayer, which is exposed to intense sunlight. This study will contribute to the understanding of the genus Croceitalea and the diversity of microbial rhodopsins.

20.
Int J Syst Evol Microbiol ; 63(Pt 5): 1885-1890, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23002047

RESUMEN

A coccoid and amorphous-shaped, non-gliding, proteorhodopsin-containing, yellow bacterium, designated strain SG-18(T), was isolated from seawater in the western North Pacific Ocean near Japan. The strain was Gram-stain-negative, obligately aerobic, heterotrophic and oxidase-positive. It hydrolysed aesculin but not DNA, urea, gelatin or agar. Growth occurred in the presence of 1-5 % NaCl, with optimum growth at 2 % NaCl. The strain grew at 15-37 °C with an optimum temperature of 25-30 °C. The DNA G+C content of the genomic DNA of strain SG-18(T) was 47.0 mol% (HPLC). The predominant isoprenoid quinone was MK-6, and major cellular fatty acids were iso-C15 : 1 G, iso-C15 : 0, iso-C15 : 0 3-OH. Phylogenetic trees generated by using 16S rRNA gene sequences revealed that strain SG-18(T) belonged to the family Flavobacteriaceae and showed 92.7 % sequence similarity to the most closely related species, Croceitalea eckloniae DOKDO 025(T). On the basis of phenotypic and phylogenetic features, strain SG-18(T) is classified as representing a novel species of a new genus within the family Flavobacteriaceae, for which the name Aureicoccus marinus gen. nov., sp. nov. is proposed. The type strain of the type species is SG-18(T) ( = NBRC 108814(T) = KCTC 23967(T)).


Asunto(s)
Flavobacteriaceae/clasificación , Filogenia , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/análisis , Flavobacteriaceae/genética , Flavobacteriaceae/aislamiento & purificación , Procesos Heterotróficos , Japón , Datos de Secuencia Molecular , Océano Pacífico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA