Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 2791, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589755

RESUMEN

Tumour cell plasticity is a major barrier to the efficacy of targeted cancer therapies but the mechanisms that mediate it are poorly understood. Here, we identify dysregulated RNA splicing as a key driver of tumour cell dedifferentiation in colorectal cancer (CRC). We find that Apc-deficient CRC cells have dysregulated RNA splicing machinery and exhibit global rewiring of RNA splicing. We show that the splicing factor SRSF1 controls the plasticity of tumour cells by controlling Kras splicing and is required for CRC invasion in a mouse model of carcinogenesis. SRSF1 expression maintains stemness in human CRC organoids and correlates with cancer stem cell marker expression in human tumours. Crucially, partial genetic downregulation of Srsf1 does not detrimentally affect normal tissue homeostasis, demonstrating that tumour cell plasticity can be differentially targeted. Thus, our findings link dysregulation of the RNA splicing machinery and control of tumour cell plasticity.


Asunto(s)
Plasticidad de la Célula , Neoplasias Colorrectales , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Plasticidad de la Célula/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Ratones , Empalme del ARN/genética , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo
2.
Cancer Res ; 82(8): 1548-1559, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35074757

RESUMEN

Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy of the bile ducts within the liver characterized by high levels of genetic heterogeneity. In the context of such genetic variability, determining which oncogenic mutations drive ICC growth has been difficult, and developing modes of patient stratification and targeted therapies remains challenging. Here we model the interactions between rare mutations with more common driver genes and combine in silico analysis of patient data with highly multiplexed in vivo CRISPR-spCas9 screens to perform a functional in vivo study into the role genetic heterogeneity plays in driving ICC. Novel tumor suppressors were uncovered, which, when lost, cooperate with the RAS oncoprotein to drive ICC growth. Focusing on a set of driver mutations that interact with KRAS to initiate aggressive, sarcomatoid-type ICC revealed that tumor growth relies on Wnt and PI3K signaling. Pharmacologic coinhibition of Wnt and PI3K in vivo impeded ICC growth regardless of mutational profile. Therefore, Wnt and PI3K activity should be considered as a signature by which patients can be stratified for treatment independent of tumor genotype, and inhibitors of these pathways should be levied to treat ICC. SIGNIFICANCE: This work shows that, despite significant genetic heterogeneity, intrahepatic cholangiocarcinoma relies on a limited number of signaling pathways to grow, suggesting common therapeutic vulnerabilities across patients.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Heterogeneidad Genética , Humanos , Fosfatidilinositol 3-Quinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA