Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 601(7893): 348-353, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35046601

RESUMEN

Nuclear spins were among the first physical platforms to be considered for quantum information processing1,2, because of their exceptional quantum coherence3 and atomic-scale footprint. However, their full potential for quantum computing has not yet been realized, owing to the lack of methods with which to link nuclear qubits within a scalable device combined with multi-qubit operations with sufficient fidelity to sustain fault-tolerant quantum computation. Here we demonstrate universal quantum logic operations using a pair of ion-implanted 31P donor nuclei in a silicon nanoelectronic device. A nuclear two-qubit controlled-Z gate is obtained by imparting a geometric phase to a shared electron spin4, and used to prepare entangled Bell states with fidelities up to 94.2(2.7)%. The quantum operations are precisely characterized using gate set tomography (GST)5, yielding one-qubit average gate fidelities up to 99.95(2)%, two-qubit average gate fidelity of 99.37(11)% and two-qubit preparation/measurement fidelities of 98.95(4)%. These three metrics indicate that nuclear spins in silicon are approaching the performance demanded in fault-tolerant quantum processors6. We then demonstrate entanglement between the two nuclei and the shared electron by producing a Greenberger-Horne-Zeilinger three-qubit state with 92.5(1.0)% fidelity. Because electron spin qubits in semiconductors can be further coupled to other electrons7-9 or physically shuttled across different locations10,11, these results establish a viable route for scalable quantum information processing using donor nuclear and electron spins.

2.
Sci Data ; 9(1): 582, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151086

RESUMEN

The availability of large-scale datasets on which to train, benchmark and test algorithms has been central to the rapid development of machine learning as a discipline. Despite considerable advancements, the field of quantum machine learning has thus far lacked a set of comprehensive large-scale datasets upon which to benchmark the development of algorithms for use in applied and theoretical quantum settings. In this paper, we introduce such a dataset, the QDataSet, a quantum dataset designed specifically to facilitate the training and development of quantum machine learning algorithms. The QDataSet comprises 52 high-quality publicly available datasets derived from simulations of one- and two-qubit systems evolving in the presence and/or absence of noise. The datasets are structured to provide a wealth of information to enable machine learning practitioners to use the QDataSet to solve problems in applied quantum computation, such as quantum control, quantum spectroscopy and tomography. Accompanying the datasets on the associated GitHub repository are a set of workbooks demonstrating the use of the QDataSet in a range of optimisation contexts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA