Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Phys Rev Lett ; 126(2): 027001, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33512215

RESUMEN

We report the topological transition by gate control in a Cd_{3}As_{2} Dirac semimetal nanowire Josephson junction with diameter of about 64 nm. In the electron branch, the quantum confinement effect enforces the surface band into a series of gapped subbands and thus nontopological states. In the hole branch, however, because the hole mean free path is smaller than the nanowire perimeter, the quantum confinement effect is inoperative and the topological property maintained. The superconductivity is enhanced by gate tuning from electron to hole conduction, manifested by a larger critical supercurrent and a larger critical magnetic field, which is attributed to the topological transition from gapped surface subbands to a gapless surface band. The gate-controlled topological transition of superconductivity should be valuable for manipulation of Majorana zero modes, providing a platform for future compatible and scalable design of topological qubits.

2.
Phys Rev Lett ; 124(15): 156601, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32357024

RESUMEN

The notion of topological phases has been extended to higher-order and has been generalized to different dimensions. As a paradigm, Cd_{3}As_{2} is predicted to be a higher-order topological semimetal, possessing three-dimensional bulk Dirac fermions, two-dimensional Fermi arcs, and one-dimensional hinge states. These topological states have different characteristic length scales in electronic transport, allowing one to distinguish their properties when changing sample size. Here, we report an anomalous dimensional reduction of supercurrent transport by increasing the size of Dirac semimetal Cd_{3}As_{2}-based Josephson junctions. An evolution of the supercurrent quantum interferences from a standard Fraunhofer pattern to a superconducting quantum interference device (SQUID)-like one is observed when the junction channel length is increased. The SQUID-like interference pattern indicates the supercurrent flowing through the 1D hinges. The identification of 1D hinge states should be valuable for deeper understanding of the higher-order topological phase in a 3D Dirac semimetal.

3.
Phys Rev Lett ; 121(23): 237701, 2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-30576175

RESUMEN

The combination of superconductivity and surface states in Dirac semimetal can produce a 4π-periodic supercurrent in a Josephson junction configuration, which can be revealed by the missing of odd Shapiro steps (especially the n=1 step). However, the suppression of the n=1 step is also anticipated in the high-power oscillatory regime of the ordinary 2π-periodic Josephson effect, which is irrelevant to the 4π-periodic supercurrent. Here, in order to identify the origin of the suppressed n=1 step, we perform the measurements of radio frequency irradiation on Nb-Dirac semimetal Cd_{3}As_{2} nanowire-Nb junctions with continuous power dependence at various frequencies. Besides the n=1 step suppression, we uncover a residual supercurrent of first node at the n=0 step, which provides a direct and predominant signature of the 4π-periodic supercurrent. Furthermore, by tuning the gate voltage, we can modulate the surface and bulk state contribution and the visibility of the n=1 step. Our results provide deep insights to explore the topological superconductivity in Dirac semimetals.

4.
Med Sci Monit ; 24: 8213-8223, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30431025

RESUMEN

BACKGROUND Clear cell renal cell carcinoma (ccRCC) is usually incurable once it progresses to metastatic stage. Hence, in-depth investigations to reveal the precise molecular mechanisms behind the metastasis of ccRCC are required to improve the therapeutic outcome of ccRCC. MATERIAL AND METHODS The level of astrocyte elevated gene 1 (AEG-1) in ccRCC tissues and cell lines was determined by quantitative real-time PCR (qRT-PCR) assay. The MTS, colony formation, wound-healing, and Transwell invasion assays were used to assess the role of AEG-1 in ccRCC cells growth, migration, and invasion in vitro, respectively. Xenograft model and lung metastasis models were constructed to analyze the functions of AEG-1 in ccRCC cells growth and metastasis in vivo. RESULTS We found that AEG-1 was overexpressed in ccRCC and was associated with the progression of ccRCC. Knocked-down AEG-1 impaired the migration and invasion of ccRCC cells in vitro. Furthermore, under-expression of AEG-1 caused complete inhibition of ccRCC cells growth and metastasis in vivo. In contrast, overexpression of AEG-1 significantly increased the migration and invasion ability of ccRCC cells in vitro. Finally, we revealed that AEG-1 boosted the metastatic ability of ccRCC cells via regulating Notch homolog 1 (Notch1). CONCLUSIONS The AEG-1/Notch1 signaling axis plays a vital role in ccRCC cell growth and metastasis.


Asunto(s)
Carcinoma de Células Renales/genética , Moléculas de Adhesión Celular/genética , Neoplasias Renales/genética , Animales , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Humanos , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Proteínas de la Membrana , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Metástasis de la Neoplasia , Proteínas de Unión al ARN , Receptor Notch1/metabolismo , Transducción de Señal
5.
Nano Lett ; 17(2): 834-841, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28099030

RESUMEN

Photodetection with extreme performances in terms of ultrafast response time, broad detection wavelength range, and high sensitivity has a wide range of optoelectronic and photonic applications, such as optical communications, interconnects, imaging, and remote sensing. Graphene, a typical two-dimensional Dirac semimetal, has shown excellent potential toward a high-performance photodetector with high operation speed, broadband response, and efficient carrier multiplications benefiting from its linear dispersion band structure with a high carrier mobility and zero bandgap. As the three-dimensional analogues of graphene, Dirac semimetal Cd3As2 processes all advantages of graphene as a photosensitive material but potentially has stronger interaction with light as a bulk material and thus enhanced responsivity. In this work, we report the realization of an ultrafast broadband photodetector based on Cd3As2. The prototype metal-Cd3As2-metal photodetector exhibits a responsivity of 5.9 mA/W with a response time of about 6.9 ps without any special device optimization. Broadband responses from 532 nm to 10.6 µm are achieved with a potential detection range extendable to far-infrared and terahertz. Systematical studies indicate that the photothermoelectric effect plays an important role in photocurrent generation. Our results suggest this emerging class of exotic quantum materials can be harnessed for photodetection with a high sensitivity and high speed (∼145 GHz) over a broad wavelength range.

6.
Small ; 11(14): 1660-4, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25400205

RESUMEN

Vertically architectured stack of multiple graphene field-effect transistors (GFETs) on a flexible substrate show great mechanical flexibility and robustness. The four GFETs are integrated in the vertical direction, and dually gated GFETs with graphene channel, PMMA dielectrics, and graphene gate electrodes are realized.

7.
Nano Lett ; 14(8): 4389-94, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25046135

RESUMEN

The photothermoelectric effect in topological insulator Bi2Se3 nanoribbons is studied. The topological surface states are excited to be spin-polarized by circularly polarized light. Because the direction of the electron spin is locked to its momentum for the spin-helical surface states, the photothermoelectric effect is significantly enhanced as the oriented motions of the polarized spins are accelerated by the temperature gradient. The results are explained based on the microscopic mechanisms of a photon induced spin transition from the surface Dirac cone to the bulk conduction band. The as-reported enhanced photothermoelectric effect is expected to have potential applications in a spin-polarized power source.

8.
Small ; 9(13): 2240-4, 2013 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-23401376

RESUMEN

Control of graphene memory devices using photons, via control of the charge-transfer process, is demonstrated by employing gate-voltage pulses to program/erase the memory elements. The hysteresis in the conductance-gate voltage-dependence of graphene field-effect transistors on a SiO2 substrate can be greatly enlarged by ultraviolet irradiation in both air and vacuum. An enhanced charge transfer between graphene and its surroundings, induced by ultraviolet illumination, is proposed.

9.
Nano Lett ; 11(11): 4601-6, 2011 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-21985530

RESUMEN

We report on the first controlled alternation between memory and threshold resistance switching (RS) in single Ni/NiO core-shell nanowires by setting the compliance current (I(CC)) at room temperature. The memory RS is triggered by a high I(CC), while the threshold RS appears by setting a low I(CC), and the Reset process is achieved without setting a I(CC). In combination with first-principles calculations, the physical mechanisms for the memory and threshold RS are fully discussed and attributed to the formation of an oxygen vacancy (Vo) chain conductive filament and the electrical field induced breakdown without forming a conductive filament, respectively. Migration of oxygen vacancies can be activated by appropriate Joule heating, and it is energetically favorable to form conductive chains rather than random distributions due to the Vo-Vo interaction, which results in the nonvolatile switching from the off- to the on-state. For the Reset process, large Joule heating reorders the oxygen vacancies by breaking the Vo-Vo interactions and thus rupturing the conductive filaments, which are responsible for the switching from on- to off-states. This deeper understanding of the driving mechanisms responsible for the threshold and memory RS provides guidelines for the scaling, reliability, and reproducibility of NiO-based nonvolatile memory devices.


Asunto(s)
Equipos de Almacenamiento de Computador , Almacenamiento y Recuperación de la Información/métodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/instrumentación , Níquel/química , Impedancia Eléctrica , Diseño de Equipo , Análisis de Falla de Equipo
10.
Nanotechnology ; 22(37): 375201, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21852722

RESUMEN

A seven orders of magnitude increase in the current on/off ratio of ZnO nanowire field-effect transistors (FETs) after Ga( + ) irradiation was observed. Transmission electron microscopy characterization revealed that the surface crystal quality of the ZnO nanowire was improved via the Ga( + ) treatment. The Ga( + ) irradiation efficiently reduces chemisorption effects and decreases oxygen vacancies in the surface layer. The enhanced performance of the nanowire FET was attributed to the decrease of surface trapped electrons and the decrease in carrier concentration.

11.
J Chem Phys ; 133(4): 044703, 2010 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-20687672

RESUMEN

To enhance performances of graphene/SiO(2) based field-effect transistors (FETs), understanding of the transfer of carriers through the graphene/SiO(2) interface is crucial. In this paper, we have studied the temperature dependent transfer characters of graphene FETs. Hysteresis loop is shown to be dominated by trapping/detrapping carriers through the graphene/SiO(2) interface.

12.
J Chem Phys ; 132(2): 024706, 2010 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-20095693

RESUMEN

The influence of the barrier between metal electrodes and graphene on the electrical properties was studied on a two-electrode device. A classical barrier model was used to analyze the current-voltage characteristics. Primary parameters including barrier height and effective resistance were achieved. The electron transport properties under magnetic field were further investigated. An abnormal peak-valley-peak shape of voltage-magnetoresistance curve was observed. The underlying mechanisms were discussed under the consideration of the important influence of the contact barrier. Our results indicate electrical properties of graphene based devices are sensitive to the contact interface.

13.
J Chem Phys ; 133(23): 234703, 2010 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-21186880

RESUMEN

The relationship between the electrical properties and structure evolution of single layer graphene was studied by gradually introducing the gallium ion irradiation. Raman spectrums show a structural transition from nano-crystalline graphene to amorphous carbon as escalating the degree of disorder of the graphene sample, which is in correspondence with the electrical transition from a Boltzmann diffusion transport to a carrier hopping transport. The results show a controllable method to tune the properties of graphene.

14.
Nano Lett ; 9(7): 2513-8, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19583279

RESUMEN

The single-crystal n-type and p-type ZnO nanowires (NWs) were synthesized via a chemical vapor deposition method, where phosphorus pentoxide was used as the dopant source. The electrical and photoluminescence studies reveal that phosphorus-doped ZnO NWs (ZnO:P NWs) can be changed from n-type to p-type with increasing P concentration. Furthermore, we report for the first time the formation of an intramolecular p-n homojunction in a single ZnO:P NW. The p-n junction diode has a high on/off current ratio of 2.5 x 10(3) and a low forward turn-on voltage of approximately 1.37 V. Finally, the photoresponse properties of the diode were investigated under UV (325 nm) excitation in air at room temperature. The high photocurrent/dark current ratio (3.2 x 10(4)) reveals that the diode has a potential as extreme sensitive UV photodetectors.


Asunto(s)
Electricidad , Nanocables/química , Óptica y Fotónica , Óxido de Zinc/química , Compuestos de Fósforo/química
15.
ACS Nano ; 14(4): 3755-3778, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32286783

RESUMEN

Characterized by bulk Dirac or Weyl cones and surface Fermi-arc states, topological semimetals have sparked enormous research interest in recent years. The nanostructures, with large surface-to-volume ratio and easy field-effect gating, provide ideal platforms to detect and manipulate the topological quantum states. Exotic physical properties originating from these topological states endow topological semimetals attractive for future topological electronics (topotronics). For example, the linear energy dispersion relation is promising for broadband infrared photodetectors, the spin-momentum locking nature of topological surface states is valuable for spintronics, and the topological superconductivity is highly desirable for fault-tolerant qubits. For real-life applications, topological semimetals in the form of nanostructures are necessary in terms of convenient fabrication and integration. Here, we review the recent progresses in topological semimetal nanostructures and start with the quantum transport properties. Then topological semimetal-based electronic devices are introduced. Finally, we discuss several important aspects that should receive great effort in the future, including controllable synthesis, manipulation of quantum states, topological field effect transistors, spintronic applications, and topological quantum computation.

16.
Nat Commun ; 11(1): 1150, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32123180

RESUMEN

One prominent hallmark of topological semimetals is the existence of unusual topological surface states known as Fermi arcs. Nevertheless, the Fermi-arc superconductivity remains elusive. Here, we report the critical current oscillations from surface Fermi arcs in Nb-Dirac semimetal Cd3As2-Nb Josephson junctions. The supercurrent from bulk states are suppressed under an in-plane magnetic field ~0.1 T, while the supercurrent from the topological surface states survives up to 0.5 T. Contrary to the minimum normal-state conductance, the Fermi-arc carried supercurrent shows a maximum critical value near the Dirac point, which is consistent with the fact that the Fermi arcs have maximum density of state at the Dirac point. Moreover, the critical current exhibits periodic oscillations with a parallel magnetic field, which is well understood by considering the in-plane orbital effect from the surface states. Our results suggest the Dirac semimetal combined with superconductivity should be promising for topological quantum devices.

17.
Nanotechnology ; 20(19): 195202, 2009 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-19420633

RESUMEN

In this work, we made both side-contact and embedded-end-contact Pt leads on the same individual carbon nanotube (CNT). The radial breathing mode (RBM) peak in the Raman spectrum showed that the nanotube was a single-walled carbon nanotube (SWCNT) of 1.5 nm in diameter. The electrical transport measurements showed that there was no observable difference in the I-V characteristics between side-contacts and embedded-end-contacts. Our experimental result confirmed a recent theoretical prediction.


Asunto(s)
Microelectrodos , Nanotecnología/instrumentación , Nanotubos de Carbono/química , Platino (Metal)/química , Cristalización/métodos , Conductividad Eléctrica , Transporte de Electrón , Diseño de Equipo , Análisis de Falla de Equipo , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Nanotubos de Carbono/ultraestructura , Tamaño de la Partícula , Propiedades de Superficie
18.
J Chem Phys ; 130(8): 084708, 2009 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-19256620

RESUMEN

The current-voltage (I-V) characteristics of single ZnO nanowires were measured varying with temperature and illumination. A model of the ZnO nanowire sandwiched by back-to-back diodes was utilized to explain the experimental data. Simulations of the I-V curves exhibited that the surface barrier height was independent of temperature from 180 to 290 K. This work also shows that the larger the incident laser power is, the smaller the contact surface barrier height will be. The photon induced reduction in the surface barrier height is attributed to the photogenerated holes, which result in a shielding effect on the surface trapped electrons.

19.
Chem Commun (Camb) ; (29): 3083-5, 2007 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-17639149

RESUMEN

A facile self-assembly growth route assisted by surfactant has been developed to synthesize tris(8-hydroxyquinoline)aluminium (Alq(3)) nanorods with regular hexagonal shape and good crystallinity, which exhibit field-emission characteristics with a very low turn-on field of ca. 3.1 V microm(-1) and a high field-enhancement factor of ca. 1300.

20.
Light Sci Appl ; 6(5): e16243, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-30167249

RESUMEN

Ionic transport in organometal halide perovskites is of vital importance because it dominates anomalous phenomena in perovskite solar cells, from hysteresis to switchable photovoltaic effects. However, excited state ionic transport under illumination has remained elusive, although it is essential for understanding the unusual light-induced effects (light-induced self-poling, photo-induced halide segregation and slow photoconductivity response) in organometal halide perovskites for optoelectronic applications. Here, we quantitatively demonstrate light-enhanced ionic transport in CH3NH3PbI3 over a wide temperature range of 17-295 K, which reveals a reduction in ionic transport activation energy by approximately a factor of five (from 0.82 to 0.15 eV) under illumination. The pure ionic conductance is obtained by separating it from the electronic contribution in cryogenic galvanostatic and voltage-current measurements. On the basis of these findings, we design a novel light-assisted method of catalyzing ionic interdiffusion between CH3NH3I and PbI2 stacking layers in sequential deposition perovskite synthesis. X-ray diffraction patterns indicate a significant reduction of PbI2 residue in the optimized CH3NH3PbI3 thin film produced via light-assisted sequential deposition, and the resulting solar cell efficiency is increased by over 100% (7.5%-15.7%) with little PbI2 residue. This new method enables fine control of the reaction depth in perovskite synthesis and, in turn, supports light-enhanced ionic transport.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA