RESUMEN
Objective To explore the roles of different insulin resistance indexes[triglyceride-glucose (TyG),triglyceride (TG)/high-density lipoprotein cholesterol (HDL-C),and metabolic score for insulin resistance (METS-IR)]and combinations of two indexes in predicting diabetes risk in hypertensive population. Methods The survey of hypertension was conducted for the residents in Wuyuan county,Jiangxi province from March to August in 2018.The basic information of hypertensive residents was collected by interview.Blood was drawn on an empty stomach in the morning and physical measurements were carried out.Logistic regression model was employed to analyze the relationship between different insulin resistance indexes and diabetes,and the area under the receiver operating characteristic curve was used for evaluating the predictive effects of each index on diabetes risk. Results A total of 14 222 hypertensive patients with an average age of (63.8±9.4) years old were included in this study,including 2616 diabetic patients.The diabetic hypertensive population had higher TyG (t=50.323,P<0.001),TG/HDL-C (Z=17.325,P<0.001),and METS-IR (t=28.839,P<0.001) than the non-diabetic hypertensive population.Multivariate analysis showed that each insulin resistance index was positively correlated with diabetes risk.The area under curve of each insulin index was in a descending order of TyG (0.770)> METS-IR (0.673)> TG/HDL-C (0.620).The difference in the area under curve between two indexes was statistically significant[TyG vs.TG/HDL-C (Z=42.325,P<0.001);TyG vs.METS-IR(Z=17.517,P<0.001);METS-IR vs.TG/HDL-C (Z=10.502,P<0.001)]. Conclusions Elevated insulin resistance indexes can increase the risk of diabetes.TyG and the combination of indexes outperform TG/HDL-C and METS-IR in the prediction of diabetes.
Asunto(s)
Diabetes Mellitus , Hipertensión , Resistencia a la Insulina , Humanos , Persona de Mediana Edad , Anciano , Glucemia/metabolismo , Biomarcadores , Glucosa , Triglicéridos , HDL-ColesterolRESUMEN
Having a limited number of VH segments, cattle rely on uniquely long DH gene segments to generate CDRH3 length variation (3-70 aa) far greater than that in humans or mice. Bovine antibodies with ultralong CDRH3s (>50 aa) possess unusual structures and abilities to bind to special antigens. In this study, we replaced most murine endogenous DH segments with bovine DH genes, generating a mouse line termed B-DH. The use of bovine DH genes significantly increased the length variation of CDRH3 and consequently the Ig heavy chain repertoire in B-DH mice. However, no ultralong CDRH3 was observed in B-DH mice, suggesting that other factors, in addition to long DH genes, are also involved in the formation of ultralong CDRH3. The B-DH mice mounted a normal humoral immune response to various antigens, although the B-cell developmental paradigm was obviously altered compared with wild-type mice. Additionally, B-DH mice are not predisposed to the generation of autoantibodies despite the interspecies DH gene replacement. The B-DH mice reported in this study provide a unique model to answer basic questions regarding the synergistic evolution of DH and VH genes, VDJ recombination and BCR selection in B-cell development.
Asunto(s)
Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Región Variable de Inmunoglobulina/genética , Animales , Formación de Anticuerpos/genética , Formación de Anticuerpos/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Bovinos , Regiones Determinantes de Complementariedad/genética , Regiones Determinantes de Complementariedad/inmunología , Marcación de Gen , Sitios Genéticos , Vectores Genéticos/genética , Inmunidad Humoral , Ratones , Ratones Transgénicos , Recombinación V(D)JRESUMEN
Hematopoietic stem cells (HSCs) have the capacity for self-renewal to maintain the HSCs' pool and the ability for multilineage differentiation, which are responsible for sustained production of multiple blood lineages. The regulation of HSC development is controlled precisely by complex signal networks and hematopoietic microenvironment, which has been termed the HSCs' niche. The Wnt signaling pathway is one of a variety of signaling pathways that have been involved in HSC self-renewal and maintenance. Previous studies are indeterminant on the regulation of adult HSCs upon canonical Wnt signaling pathways because of the different experimental systems and models used. In this study, we generated the conditional knockout Wnt coreceptor low-density lipoprotein receptor-related protein 5 (Lrp5) and low-density lipoprotein receptor-related protein 6 (Lrp6) mice in adult hematopoiesis via Vav-Cre Loxp system. Inactivation of Lrp5 and -6 in a hematopoietic system diminished the pool of HSCs, but there were no obvious defects in mature immune cells. Lrp5 and -6 double deficiency HSCs showed intrinsic defects in self-renewal and differentiation due to reduced proliferation and increased quiescence of the cell cycle. Analysis of HSC gene expression suggested that the quiescence regulators were significantly up-regulated, such as Egr1, Cdkn1a, Nr4a1, Gata2, Junb and Btg2, and the positive cell cycle regulators were correspondingly down-regulated, such as Ccna2 and Ranbp1. Taken together, we investigated the roles of Lrp5 and -6 in HSCs by functional and bioinformatic assays, and we demonstrated that Lrp5 and -6 are required for the self-renewal and differentiation of adult HSCs. The canonical Wnt pathway may contribute to maintaining the HSC pool and regulate the differentiation of adult HSCs by controlling cell cycle gene regulatory module.-Liu, J., Cui, Z., Wang, F., Yao, Y., Yu, G., Liu, J., Cao, D., Niu, S., You, M., Sun, Z., Lian, D., Zhao, T., Kang, Y., Zhao, Y., Xue, H.-H., Yu, S. Lrp5 and Lrp6 are required for maintaining self-renewal and differentiation of hematopoietic stem cells.
Asunto(s)
Diferenciación Celular/fisiología , Células Madre Hematopoyéticas/metabolismo , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Animales , Ciclo Celular/fisiología , Regulación hacia Abajo/fisiología , Hematopoyesis/fisiología , Ratones , Nicho de Células Madre/fisiología , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/fisiologíaRESUMEN
Long noncoding RNAs (lncRNAs) are emerging as critical mediators of various biological processes in the immune system. The current data showed that the lncRNA Malat1 is highly expressed in T cell subsets, but the function of Malat1 in T cell remains unclear. In this study, we detected the T cell development and both CD8+ and CD4+ T cell response to LCMV infection using Malat1-/- mice model. To our surprise, there were no significant defects in thymocytes at different developmental stages and the peripheral T cell pool with ablation of Malat1. During LCMV infection, Malat1-/- mice exhibited normal effector and memory CD8+ T cells as well as TFH cells differentiation. Our results indicated that Malat1 is not essential for T cell development and T cell-mediated antiviral response though it expresses at very high level in different T cell populations.
Asunto(s)
Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/inmunología , ARN Largo no Codificante/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Biomarcadores , Diferenciación Celular , Humanos , Inmunofenotipificación , Ratones , Ratones Noqueados , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismoRESUMEN
Efficient immune responses rely on the proper differentiation of CD8+ T cells into effector and memory cells. Here, we show a critical requirement of N6-Methyladenosine (m6A) methyltransferase Mettl3 during CD8+ T cell responses upon acute viral infection. Conditional deletion of Mettl3 in CD8+ T cells impairs effector expansion and terminal differentiation in an m6A-dependent manner, subsequently affecting memory formation and the secondary response of CD8+ T cells. Our combined RNA-seq and m6A-miCLIP-seq analyses reveal that Mettl3 deficiency broadly impacts the expression of cell cycle and transcriptional regulators. Remarkably, Mettl3 binds to the Tbx21 transcript and stabilizes it, promoting effector differentiation of CD8+ T cells. Moreover, ectopic expression of T-bet partially restores the defects in CD8+ T cell differentiation in the absence of Mettl3. Thus, our study highlights the role of Mettl3 in regulating multiple target genes in an m6A-dependent manner and underscores the importance of m6A modification during CD8+ T cell response.
Asunto(s)
Linfocitos T CD8-positivos , Metiltransferasas , Diferenciación Celular/genética , Metiltransferasas/genéticaRESUMEN
N6-methyladenosine (m6A) methyltransferase Mettl3 is involved in conventional T cell immunity; however, its role in innate immune cells remains largely unknown. Here, we show that Mettl3 intrinsically regulates invariant natural killer T (iNKT) cell development and function in an m6A-dependent manner. Conditional ablation of Mettl3 in CD4+CD8+ double-positive (DP) thymocytes impairs iNKT cell proliferation, differentiation, and cytokine secretion, which synergistically causes defects in B16F10 melanoma resistance. Transcriptomic and epi-transcriptomic analyses reveal that Mettl3 deficiency disturbs the expression of iNKT cell-related genes with altered m6A modification. Strikingly, Mettl3 modulates the stability of the Creb1 transcript, which in turn controls the protein and phosphorylation levels of Creb1. Furthermore, conditional targeting of Creb1 in DP thymocytes results in similar phenotypes of iNKT cells lacking Mettl3. Importantly, ectopic expression of Creb1 largely rectifies such developmental defects in Mettl3-deficient iNKT cells. These findings reveal that the Mettl3-m6A-Creb1 axis plays critical roles in regulating iNKT cells at the post-transcriptional layer.
Asunto(s)
Diferenciación Celular , Células T Asesinas Naturales , Diferenciación Celular/genética , Metiltransferasas , Proteínas , Timocitos , Animales , RatonesRESUMEN
The underlying mechanisms of thymocyte development and lineage determination remain incompletely understood, and the emerging evidences demonstrated that RNA binding proteins (RBPs) are deeply involved in governing T cell fate in thymus. Serine/arginine-rich splicing factor 1 (SRSF1), as a classical splicing factor, is a pivotal RBP for gene expression in various biological processes. Our recent study demonstrated that SRSF1 plays essential roles in the development of late thymocytes by modulating the T cell regulatory gene networks post-transcriptionally, which are critical in response to type I interferon signaling for supporting thymocyte maturation. Here, we report SRSF1 also contributes to the determination of the CD8+ T cell fate. By specific ablation of SRSF1 in CD4+CD8+ double positive (DP) thymocytes, we found that SRSF1 deficiency impaired the maturation of late thymocytes and diminished the output of both CD4+ and CD8+ single positive T cells. Interestingly, the ratio of mature CD4+ to CD8+ cells was notably altered and more severe defects were exhibited in CD8+ lineage than those in CD4+ lineage, reflecting the specific function of SRSF1 in CD8+ T cell fate decision. Mechanistically, SRSF1-deficient cells downregulate their expression of Runx3, which is a crucial transcriptional regulator in sustaining CD8+ single positive (SP) thymocyte development and lineage choice. Moreover, forced expression of Runx3 partially rectified the defects in SRSF1-deficient CD8+ thymocyte maturation. Thus, our data uncovered the previous unknown role of SRSF1 in establishment of CD8+ cell identity.
Asunto(s)
Antígenos CD4/genética , Linfocitos T CD8-positivos/metabolismo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Factores de Empalme Serina-Arginina/deficiencia , Timocitos/metabolismo , Animales , Antígenos CD4/metabolismo , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Linaje de la Célula/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Regulación hacia Abajo , Regulación de la Expresión Génica/inmunología , Hematopoyesis , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factores de Empalme Serina-Arginina/genéticaRESUMEN
BACKGROUND: Hypertension is a major cardiovascular risk factor for cognitive impairment. Lipid accumulation product (LAP), an index that represents fat overaccumulation in the body, has been shown to be associated with cardiovascular disease. Nevertheless, the relationship between LAP and cognitive function in hypertensive patients with normal weight has been infrequently studied. OBJECTIVE: This study aimed to assess the relationship between LAP and cognitive function in hypertensive patients with normal weight. METHODS: This study included 5,542 Chinese hypertensive patients with normal weight. Cognitive function was evaluated using the Mini-Mental State Examination (MMSE). The relationship between LAP and MMSE scores was evaluated using multiple linear regression. RESULTS: The mean age of the participants was 64.8 ± 9.3 years, and 2,700 were men (48.7%). The mean MMSE score was 24.5 ± 5.1 in men and 19.2 ± 6.5 in women. The mean LAP was 26.2 ± 25.5 in men and 42.5 ± 34 in women. Log10-LAP showed a significant positive association with MMSE score (men: ß = 0.69, 95% CI 0.14-1.24, p = 0.015; women: ß = 1.03, 95% CI 0.16-1.90, p = 0.020). When LAP was divided into 3 groups according to tertiles, participants in the third LAP tertile had higher MMSE scores for both men (p for trend = 0.04) and women (p for trend = 0.015). CONCLUSION: LAP showed an independent positive association with MMSE in Chinese hypertensive patients with normal weight.
RESUMEN
Aiming at alleviating the adverse effects on attached microalgae biofilm growth caused by heterogeneous spatial light distributions within the attached cultivation photobioreactors (PBRs), an innovative PBR integrated with stacked horizontal planar waveguide modules (SHPW-PBR) was proposed in this work. Different from the conventional PBR, the emergent light from the external LED light bars were guided and evenly redistributed within the SHPW-PBR by the planar waveguides and hence provided light energy for microalgae cells photoautotrophic growth. In comparison with the control PBR, the average light intensity illuminating the attached Chlorella vulgaris biofilm in the SHPW-PBR was elevated by 204.11% and contributed to a 145.20% improvement on areal C. vulgaris biofilm production. Thereafter, responses of attached C. vulgaris biofilm growth in the SHPW-PBR to various light intensities were evaluated and the maximum areal C. vulgaris biofilm density reached 90.43 g m-2 under the light intensity of 136 µmol m-2 s-1 after 9 days cultivation. Furthermore, the SHPW-PBR can be easily scaled-up by increasing the quantity of the stacked planar waveguide modules and thus shows great potential in biofilm-based biomass production.
Asunto(s)
Chlorella vulgaris , Microalgas , Biomasa , Dióxido de Carbono , FotobiorreactoresRESUMEN
T cell factor 1 (Tcf1) is known as a critical mediator for natural killer (NK) cell development and terminal maturation. However, its essential targets and precise mechanisms involved in early NK progenitors (NKP) are not well clarified. To investigate the role of Tcf1 in NK cells at distinct developmental phases, we employed three kinds of genetic mouse models, namely, Tcf7fl/flVavCre/+, Tcf7fl/flCD122Cre/+ and Tcf7fl/flNcr1Cre/+ mice, respectively. Similar to Tcf1 germline knockout mice, we found notably diminished cell number and defective development in BM NK cells from all strains. In contrast, Tcf7fl/flNcr1Cre/+ mice exhibited modest defects in splenic NK cells compared with those in the other two strains. By analyzing the published ATAC-seq and ChIP-seq data, we found that Tcf1 directly targeted 110 NK cell-related genes which displayed differential accessibility in the absence of Tcf1. Along with this clue, we further confirmed that a series of essential regulators were expressed aberrantly in distinct BM NK subsets with conditional ablating Tcf1 at NKP stage. Eomes, Ets1, Gata3, Ikzf1, Ikzf2, Nfil3, Runx3, Sh2d1a, Slamf6, Tbx21, Tox, and Zeb2 were downregulated, whereas Spi1 and Gzmb were upregulated in distinct NK subsets due to Tcf1 deficiency. The dysregulation of these genes jointly caused severe defects in NK cells lacking Tcf1. Thus, our study identified essential targets of Tcf1 in NK cells, providing new insights into Tcf1-dependent regulatory programs in step-wise governing NK cell development.
Asunto(s)
Factor Nuclear 1-alfa del Hepatocito/metabolismo , Células Asesinas Naturales/fisiología , Subgrupos Linfocitarios/fisiología , Células Progenitoras Linfoides/fisiología , Animales , Antígenos Ly/genética , Antígenos Ly/metabolismo , Diferenciación Celular , Células Cultivadas , Regulación de la Expresión Génica , Granzimas/genética , Granzimas/metabolismo , Factor Nuclear 1-alfa del Hepatocito/genética , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor 1 Gatillante de la Citotoxidad Natural/genética , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismoRESUMEN
The underlying mechanisms of thymocyte maturation remain largely unknown. Here, we report that serine/arginine-rich splicing factor 1 (SRSF1) intrinsically regulates the late stage of thymocyte development. Conditional deletion of SRSF1 resulted in severe defects in maintenance of late thymocyte survival and a blockade of the transition of TCRßhiCD24+CD69+ immature to TCRßhiCD24-CD69- mature thymocytes, corresponding to a notable reduction of recent thymic emigrants and diminished periphery T cell pool. Mechanistically, SRSF1 regulates the gene networks involved in thymocyte differentiation, proliferation, apoptosis, and type I interferon signaling pathway to safeguard T cell intrathymic maturation. In particular, SRSF1 directly binds and regulates Irf7 and Il27ra expression via alternative splicing in response to type I interferon signaling. Moreover, forced expression of interferon regulatory factor 7 rectifies the defects in SRSF1-deficient thymocyte maturation via restoring expression of type I interferon-related genes. Thus, our work provides new insight on SRSF1-mediated posttranscriptional regulatory mechanism of thymocyte development.
RESUMEN
Tcf-1 (encoded by Tcf7) not only plays critical roles in promoting T cell development and differentiation but also has been identified as a tumor suppressor involved in preventing T cell malignancy. However, the comprehensive mechanisms of Tcf-1 involved in T cell transformation remain poorly understood. In this study, Tcf7fl/fl mice were crossed with Vav-cre, Lck-cre, or Cd4-cre mice to delete Tcf-1 conditionally at the beginning of the HSC, DN2-DN3, or DP stage, respectively. The defective T cell development phenotypes became gradually less severe as the deletion stage became more advanced in distinct mouse models. Interestingly, consistent with Tcf7-/- mice, Tcf7fl/flVav-cre mice developed aggressive T cell lymphoma within 45 weeks, but no tumors were generated in Tcf7fl/flLck-cre or Tcf7fl/flCd4-cre mice. Single-cell RNA-seq (ScRNA-seq) indicated that ablation of Tcf-1 at distinct phases can subdivide DN1 cells into three clusters (C1, C2, and C3) and DN2-DN3 cells into three clusters (C4, C5, and C6). Moreover, Tcf-1 deficiency redirects bifurcation among divergent cell fates, and clusters C1 and C4 exhibit high potential for leukemic transformation. Mechanistically, we found that Tcf-1 directly binds and mediates chromatin accessibility for both typical T cell regulators and proto-oncogenes, including Myb, Mycn, Runx1, and Lyl1 in the DN1 phase and Lef1, Id2, Dtx1, Fyn, Bcl11b, and Zfp36l2 in the DN2-DN3 phase. The aberrant expression of these genes due to Tcf-1 deficiency in very early T cells contributes to subsequent tumorigenesis. Thus, we demonstrated that Tcf-1 plays stage-specific roles in regulating early thymocyte development and transformation, providing new insights and evidence for clinical trials on T-ALL leukemia.
Asunto(s)
Biomarcadores de Tumor/genética , Transformación Celular Neoplásica/patología , Factor Nuclear 1-alfa del Hepatocito/fisiología , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/fisiología , Linfoma de Células T/patología , Análisis de la Célula Individual/métodos , Linfocitos T Reguladores/inmunología , Animales , Diferenciación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/inmunología , Transformación Celular Neoplásica/metabolismo , Perfilación de la Expresión Génica , Activación de Linfocitos , Linfoma de Células T/etiología , Linfoma de Células T/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
T follicular helper (TFH) cells are specialized effector CD4+ T cells critical to humoral immunity. Whether post-transcriptional regulation has a function in TFH cells is unknown. Here, we show conditional deletion of METTL3 (a methyltransferase catalyzing mRNA N6-methyladenosine (m6A) modification) in CD4+ T cells impairs TFH differentiation and germinal center responses in a cell-intrinsic manner in mice. METTL3 is necessary for expression of important TFH signature genes, including Tcf7, Bcl6, Icos and Cxcr5 and these effects depend on intact methyltransferase activity. m6A-miCLIP-seq shows the 3' UTR of Tcf7 mRNA is subjected to METTL3-dependent m6A modification. Loss of METTL3 or mutation of the Tcf7 3' UTR m6A site results in accelerated decay of Tcf7 transcripts. Importantly, ectopic expression of TCF-1 (encoded by Tcf7) rectifies TFH defects owing to METTL3 deficiency. Our findings indicate that METTL3 stabilizes Tcf7 transcripts via m6A modification to ensure activation of a TFH transcriptional program, indicating a pivotal function of post-transcriptional regulation in promoting TFH cell differentiation.
Asunto(s)
Diferenciación Celular/genética , Diferenciación Celular/fisiología , Metiltransferasas/genética , Metiltransferasas/metabolismo , Células T Auxiliares Foliculares/metabolismo , Animales , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Centro Germinal/inmunología , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Activación de Linfocitos , Linfocitos Nulos , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , ARN Mensajero/metabolismo , Receptores CXCR5/metabolismoRESUMEN
Invariant natural killer T (iNKT) cells are highly conserved innate-like T lymphocytes that originate from CD4+CD8+ double-positive (DP) thymocytes. Here, we report that serine/arginine splicing factor 1 (SRSF1) intrinsically regulates iNKT cell development by directly targeting Myb and balancing the abundance of short and long isoforms. Conditional ablation of SRSF1 in DP cells led to a substantially diminished iNKT cell pool due to defects in proliferation, survival, and TCRα rearrangement. The transition from stage 0 to stage 1 of iNKT cells was substantially blocked, and the iNKT2 subset was notably diminished in SRSF1-deficient mice. SRSF1 deficiency resulted in aberrant expression of a series of regulators that are tightly correlated with iNKT cell development and iNKT2 differentiation, including Myb, PLZF, Gata3, ICOS, and CD5. In particular, we found that SRSF1 directly binds and regulates pre-mRNA alternative splicing of Myb and that the expression of the short isoform of Myb is substantially reduced in SRSF1-deficient DP and iNKT cells. Strikingly, ectopic expression of the Myb short isoform partially rectified the defects caused by ablation of SRSF1. Furthermore, we confirmed that the SRSF1-deficient mice exhibited resistance to acute liver injury upon α-GalCer and Con A induction. Our findings thus uncovered a previously unknown role of SRSF1 as an essential post-transcriptional regulator in iNKT cell development and functional differentiation, providing new clinical insights into iNKT-correlated disease.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Células T Asesinas Naturales/inmunología , Factores de Empalme Serina-Arginina/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Selección Clonal Mediada por Antígenos , Citotoxicidad Inmunológica , Inmunidad Innata , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo , Factores de Empalme Serina-Arginina/genéticaRESUMEN
Rationale: Breast cancer preferentially develops osteolytic bone metastasis, which makes patients suffer from pain, fractures and spinal cord compression. Accumulating evidences have shown that exosomes play an irreplaceable role in pre-metastatic niche formation as a communication messenger. However, the function of exosomes secreted by breast cancer cells remains incompletely understood in bone metastasis of breast cancer. Methods: Mouse xenograft models and intravenous injection of exosomes were applied for analyzing the role of breast cancer cell-derived exosomes in vivo. Effects of exosomes secreted by the mildly metastatic MDA231 and its subline SCP28 with highly metastatic ability on osteoclasts formation were confirmed by TRAP staining, ELISA, microcomputed tomography, histomorphometric analyses, and pit formation assay. The candidate exosomal miRNAs for promoting osteoclastogenesis were globally screened by RNA-seq. qRT-PCR, western blot, confocal microscopy, and RNA interfering were performed to validate the function of exosomal miRNA. Results: Implantation of SCP28 tumor cells in situ leads to increased osteoclast activity and reduced bone density, which contributes to the formation of pre-metastatic niche for tumor cells. We found SCP28 cells-secreted exosomes are critical factors in promoting osteoclast differentiation and activation, which consequently accelerates bone lesion to reconstruct microenvironment for bone metastasis. Mechanistically, exosomal miR-21 derived from SCP28 cells facilitates osteoclastogenesis through regulating PDCD4 protein levels. Moreover, miR-21 level in serum exosomes of breast cancer patients with bone metastasis is significantly higher than that in other subpopulations. Conclusion: Our results indicate that breast cancer cell-derived exosomes play an important role in promoting breast cancer bone metastasis, which is associated with the formation of pre-metastatic niche via transferring miR-21 to osteoclasts. The data from patient samples further reflect the significance of miR-21 as a potential target for clinical diagnosis and treatment of breast cancer bone metastasis.
Asunto(s)
Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Exosomas/genética , Animales , Densidad Ósea/genética , Diferenciación Celular/genética , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Osteoclastos/patología , Osteogénesis/genética , Proteínas de Unión al ARN/genética , Microambiente Tumoral/genéticaRESUMEN
Obtaining high quality syngas from sewage sludge (SS) means transferring a low-grade SS into a high-grade fuel or raw materials for chemical products. In this study, Fe is added to SS in form of Fe2(SO4)3 to produce an effective and self-sufficient catalyst in order to obtain more syngas and minimize liquid products from SS pyrolysis. The Fe-embedded sewage sludge chars (SSCs) were used as catalysts for volatile reforming at 600°C. It has been found that the gas yield increases from 15.9 to 35.8wt% of the SS and that of liquids decreases from 31.9 to 10.2wt% after volatile reforming with Fe-embedded SSC when Fe was added equal to 7 % in the dried SS. In addition, the content of nitrogen-containing compounds in the oily products decreased. After reforming with Fe-embedded SSC, the molar fractions of syngas combustible components, including H2, CH4 and CO, increase, and the higher heating value of the syngas increased to 17.0MJ/Nm3 from the original 12.5MJ/Nm3 obtained from SS pyrolysis at 550°C. Moreover, the volatile reforming seems to reduce the level of some important syngas pollutants, like H2S, HCl and HCN, even though it was also observed an increase of the contents of SO2, NH3, NO2, HCNO and N2O.