Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 22(13): 5487-5494, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35748615

RESUMEN

Polymer networks generally consist of an ensemble of single chains. However, understanding how chain conformation affects the structure and properties of polymer networks remains a challenge for optimizing their functionality. Here, we present the fabrication and comparative study of a polymer network composed of collapsed self-entangled chains (intrachain entangled network) and a standard polymer network in which random-coil chains are entangled with each other (interchain entangled network). For poly(methyl methacrylate) thin films composed of these networks, we coupled solvent vapor swelling and single-molecule tracking techniques to examine the anomalies in the dynamics of a small-molecular probe included in the system. We demonstrate that when compared to the interchain entangled network the intrachain one exhibits a more substantial structural heterogeneity, particularly under highly crowded conditions. This network also exhibits physical compactness, which keeps the heterogeneous network structure frozen over time and impedes network plasticization through solvent uptake by the film.


Asunto(s)
Polímeros , Polimetil Metacrilato , Conformación Molecular , Polímeros/química , Solventes
2.
Sensors (Basel) ; 21(10)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34066116

RESUMEN

Distributed optical fiber sensors are a promising technology for monitoring the structural health of large-scale structures. The fiber sensors are usually coated with nonfragile materials to protect the sensor and are bonded onto the structure using adhesive materials. However, local deformation of the relatively soft coating and adhesive layers hinders strain transfer from the base structure to the optical fiber sensor, which reduces and distorts its strain distribution. In this study, we analytically derive a strain transfer function in terms of strain periods, which enables us to understand how the strain reduces and is distorted in the optical fiber depending on the variation of the strain field. We also propose a method for back-calculating the base structure's strain field using the reduced and distorted strain distribution in the optical fiber sensor. We numerically demonstrate the back-calculation of the base strain using a composite beam model with an open hole and an attached distributed optical fiber sensor. The new strain transfer function and the proposed back-calculation method can enhance the strain field estimation accuracy in using a distributed optical fiber sensor. This enables us to use a highly durable distributed optical fiber sensor with thick protective layers in precision measurement.

3.
Phys Chem Chem Phys ; 22(36): 20665-20672, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32895677

RESUMEN

In this study, the effect of interfacial interaction between solvent and sheets on the exfoliation of sulfur-doped reduced graphene oxide (SrGO) sheets was studied, using molecular dynamics simulations. Four organic solvents of toluene, tetrahydrofuran, N-methyl-2-pyrrolidone, and sulfolane, were used in this simulation. An insertion simulation considering the size effect of insertion molecules was used to determine the insertion efficiency of the solvent molecules. The insertion efficiency of toluene was the best among the four solvents due to the influence of the effective thickness of the solvent. An exfoliation simulation considering electrostatic interaction was conducted to evaluate the exfoliation efficiency of the SrGO sheets. Unlike the insertion efficiency case, the sulfolane was found to have the best exfoliation efficiency among the four solvents, due to the strong electrostatic repulsion and weak attractive energy between the SrGO sheets. The exfoliation efficiency of the SrGO sheets was improved by increasing the sulfur content and the ratio of the thiol type to the total number of sulfur-doped groups. These results reveal that decreasing the attractive energy and increasing the electrostatic repulsion between the solvent and SrGO sheets are a useful way to improve the exfoliation efficiency of SrGO sheets.

4.
Phys Chem Chem Phys ; 20(45): 28616-28622, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30406230

RESUMEN

In this study, the influences of the carboxyl functionalization of intercalators on exfoliation of graphite oxide were analyzed using molecular dynamics (MD) simulations. Molecular models of four-layered graphene oxide (GO) sheets, four different solvents (ethanol, dimethylformamide, tetrahydrofuran, and N-methyl-2-pyrrolidone), and four different intercalators (anthracene, 2-anthracenecarboxylic acid, 2,3-anthracenedicarboxylic acid, and 2,6-anthracenedicarboxylic acid) were used in the MD simulations. A separation simulation of GO sheets was performed to determine the point at which the GO sheets begin to exfoliate. An insertion simulation was used to obtain the minimum kinetic energy required for exfoliation and to calculate GO-solvent and GO-intercalator interaction energies. As the simulation result, GO-solvent and GO-intercalator interactions affected the minimum kinetic energy required for exfoliation. Having more carboxyl functional groups on the anthracene improved both the GO-intercalator interaction and the efficiency of the intercalators during exfoliation. These results reveal that increasing the interaction energy between the GO sheets and the insertion molecules is an efficient way to improve the performance of the solvents and the intercalators for the exfoliation of GO sheets.

5.
ACS Appl Mater Interfaces ; 16(3): 3853-3861, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38207283

RESUMEN

A surface ligand modification of colloidal nanocrystals (NCs) is one of the crucial issues for their practical applications because of the highly insulating nature of native long-chain ligands. Herein, we present straightforward methods for phase transfer and ligand exchange of amphiphilic Ag2S NCs and the fabrication of highly conductive films. S-terminated Ag2S (S-Ag2S) NCs are capped with ionic octylammonium (OctAH+) ligands to compensate for surface anionic charge, S2-, of the NC core. An injection of polar solvent, formamide (FA), into S-Ag2S NCs dispersed in toluene leads to an additional envelopment of the charged S-Ag2S NC core by FA due to electrostatic stabilization, which allows its amphiphilic nature and results in a rapid and effective phase transfer without any ligand addition. Because the solvation by FA involves a dissociation equilibrium of the ionic OctAH+ ligands, controlling a concentration of OctAH+ enables this phase transfer to show reversibility. This underlying chemistry allows S-Ag2S NCs in FA to exhibit a complete ligand exchange to Na+ ligands. The S-Ag2S NCs with Na+ ligands show a close interparticle distance and compatibility for uniformly deposited thin films by a simple spin-coating method. In photoelectrochemical measurements with stacked Ag2S NCs on ITO electrodes, a 3-fold enhanced current response was observed for the ligand passivation of Na+ compared to OctAH+, indicating a significantly enhanced charge transport in the Ag2S NC film by a drastically reduced interparticle distance due to the Na+ ligands.

6.
Polymers (Basel) ; 15(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36679330

RESUMEN

Thermal transport simulations were performed to investigate the important factors affecting the thermal conductivity based on the structure of semi-crystalline polyetheretherketone (PEEK), and the addition of boron nitride (BN) sheets. The molecular-level structural analysis facilitated the prediction of the thermal conductivity of the optimal structure of PEEK reflecting the best parameter value of the length of amorphous chains, and the ratio of linkage conformations, such as loops, tails, and bridges. It was found that the long heat transfer paths of polymer chains were induced by the addition of BN sheets, which led to the improvement of the thermal conductivities of the PEEK/BN composites. In addition, the convergence of the thermal conductivities of the PEEK/BN composites in relation to BN sheet size was verified by the disconnection of the heat transfer path due to aggregation of the BN sheets.

7.
Polymers (Basel) ; 15(7)2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37050260

RESUMEN

In this study, polyether ether ketone (PEEK) composites reinforced with newly developed water-dispersible polyimide (PI)-sized carbon fibers (CFs) were developed to enhance the effects of the interfacial interaction between PI-sized CFs and a PEEK polymer on their thermo-mechanical properties. The PI sizing layers on these CFs may be induced to interact vigorously with the p-phenylene groups of PEEK polymer chains because of increased electron affinity. Therefore, these PI-sized CFs are effective for improving the interfacial adhesion of PEEK composites. PEEK composites were reinforced with C-CFs, de-CFs, and PI-sized CFs. The PI-sized CFs were prepared by spin-coating a water-dispersible PAS suspension onto the de-CFs, followed by heat treatment for imidization. The composites were cured using a compression molding machine at a constant temperature and pressure. Atomic force and scanning electron microscopy observations of the structures and morphologies of the carbon fiber surfaces verified the improvement of their thermo-mechanical properties. Molecular dynamics simulations were used to investigate the effects of PI sizing agents on the stronger interfacial interaction energy between the PI-sized CFs and the PEEK polymer. These results suggest that optimal amounts of PI sizing agents increased the interfacial properties between the CFs and the PEEK polymer.

8.
Nat Commun ; 14(1): 2866, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208341

RESUMEN

Infrared (IR) transmissive polymeric materials for optical elements require a balance between their optical properties, including refractive index (n) and IR transparency, and thermal properties such as glass transition temperature (Tg). Achieving both a high refractive index (n) and IR transparency in polymer materials is a very difficult challenge. In particular, there are significant complexities and considerations to obtaining organic materials that transmit in the long-wave infrared (LWIR) region, because of high optical losses due to the IR absorption of the organic molecules. Our differentiated strategy to extend the frontiers of LWIR transparency is to reduce the IR absorption of the organic moieties. The proposed approach synthesized a sulfur copolymer via the inverse vulcanization of 1,3,5-benzenetrithiol (BTT), which has a relatively simple IR absorption because of its symmetric structure, and elemental sulfur, which is mostly IR inactive. This strategy resulted in approximately 1 mm thick windows with an ultrahigh refractive index (nav > 1.9) and high mid-wave infrared (MWIR) and LWIR transmission, without any significant decline in thermal properties. Furthermore, we demonstrated that our IR transmissive material was sufficiently competitive with widely used optical inorganic and polymeric materials.

9.
Polymers (Basel) ; 14(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35215648

RESUMEN

The sulfur on the sulfur-assisted reduced graphene oxide (SrGO) surface provides the origin of poly(phenylene sulfide) PPS-grafting via SNAr mechanism. In-situ polymerization from sulfur on SrGO afforded surface modification of SrGO, resulting in enhanced dispersibility in PPS. The tensile strength, electrical and thermal conductivities, and flame retardancy of PPS-coated SrGO were efficiently enhanced using highly concentrated SrGO and masterbatch (MB) for industrial purposes. Three-dimensional X-ray microtomography scanning revealed that diluting MB in the PPS resin afforded finely distributed SrGO across the PPS resin, compared to the aggregated state of graphene oxide. For the samples after dilution, the thermal conductivity and flame retardancy of PPS/SrGO are preserved and typically enhanced by up to 20%. The proposed PPS/SrGO MB shows potential application as an additive for reinforced PPS due to the ease of addition during the extrusion process.

10.
Sci Adv ; 8(16): eabn0939, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35452295

RESUMEN

Theoretical considerations suggest that the strength of carbon nanotube (CNT) fibers be exceptional; however, their mechanical performance values are much lower than the theoretical values. To achieve macroscopic fibers with ultrahigh performance, we developed a method to form multidimensional nanostructures by coalescence of individual nanotubes. The highly aligned wet-spun fibers of single- or double-walled nanotube bundles were graphitized to induce nanotube collapse and multi-inner walled structures. These advanced nanostructures formed a network of interconnected, close-packed graphitic domains. Their near-perfect alignment and high longitudinal crystallinity that increased the shear strength between CNTs while retaining notable flexibility. The resulting fibers have an exceptional combination of high tensile strength (6.57 GPa), modulus (629 GPa), thermal conductivity (482 W/m·K), and electrical conductivity (2.2 MS/m), thereby overcoming the limits associated with conventional synthetic fibers.

11.
ACS Appl Mater Interfaces ; 13(24): 28916-28924, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34102837

RESUMEN

Shape memory composites are fascinating materials with the ability to preserve deformed shapes that recover when triggered by certain external stimuli. Although elastomers are not inherently shape memory materials, the inclusion of phase-change materials within the elastomer can impart shape memory properties. When this filler changes the phase from liquid to solid, the effective modulus of the polymer increases significantly, enabling stiffness tuning. Using gallium, a metal with a low melting point (29.8 °C), it is possible to create elastomeric materials with metallic conductivity and shape memory properties. This concept has been used previously in core-shell (gallium-elastomer) fibers and foams, but here, we show that it can also be implemented in elastomeric films containing microchannels. Such microchannels are appealing because it is possible to control the geometry of the filler and create metallically conductive circuits. Stretching the solidified metal fractures the fillers; however, they can heal by body heat to restore conductivity. Such conductive, shape memory sheets with healable conductivity may find applications in stretchable electronics and soft robotics.

12.
Polymers (Basel) ; 12(5)2020 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-32344875

RESUMEN

To induce uniform dispersion and excellent interfacial properties, we adopted a strategy of combining both polyamide 6 (PA6) grafting for multi-walled carbon nanotubes (MWCNTs) and reactive extrusion of PA6 matrix, based on anionic ring-opening polymerization of ε-caprolactam (CL). Compared to -COOH and -NCO treatments of MWCNTs, enhanced MWCNT dispersion and tensile properties of the composites were achieved using the applied strategy, and the tensile strength and modulus of the PA6-grafted MWCNT-filled PA6 composites were 5.3% and 20.5% higher than those of the purified MWCNT-filled PA6 composites, respectively. In addition, they were almost similar to the theoretical ones calculated by the modified Mori-Tanaka method (MTM) assuming a perfect interface, indicating that the tensile properties of MWCNT-filled PA6 composites can be optimized by PA6 grafting and reactive extrusion based on the anionic ring-opening polymerization of CL due to uniform MWCNT dispersion and excellent interfacial property.

13.
Polymers (Basel) ; 12(4)2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32295199

RESUMEN

In this study, we investigated the synergistic effects of thermally conductive hybrid carbonaceous fillers of mesophase pitch-based carbon fibers (MPCFs) and reduced graphene oxides (rGOs) on the thermal conductivity of polymer matrix composites. Micro-sized MPCFs with different lengths (50 µm, 200 µm, and 6 mm) and nano-sized rGOs were used as the thermally conductive fillers used for the preparation of the heat-dissipation polymer composites. For all MPCF fillers with a different length, the thermal conductivity values of the MPCF/epoxy composites were proportional to the MPCF length and loading amount (0-50 wt%) of MPCFs. For an MPCF:rGO weight ratio of 49:1 (total loading amount of 50 wt%), the thermal conductivity values of MPCF-rGO/epoxy composites loaded with MPCFs of 50 µm, 200 µm, and 6 mm increased from 5.56 to 7.98 W/mK (approximately 44% increase), from 7.36 to 9.80 W/mK (approximately 33% increase), and from 11.53 to 12.58 W/mK (approximately 9% increase) compared to the MPCF/epoxy composites, respectively, indicating the synergistic effect on the thermal conductivity enhancement. The rGOs in the MPCF-rGO/epoxy composites acted as thermal bridges between neighboring MPCFs, resulting in the formation of effective heat transfer pathways. In contrast, the MPCF-rGO/epoxy composites with MPCF:rGO weight ratios of 48:2 and 47:3 decreased the synergistic effect more significantly compared to rGO content of 1 wt%, which is associated with the agglomeration of rGO nanoparticles. The synergistic effect was inversely proportional to the MPCF length. A theoretical approach, the modified Mori-Tanaka model, was used to estimate the thermal conductivity values of the MPCF-rGO/epoxy composites, which were in agreement with the experimentally measured values for MPCF-rGO/epoxy composites loaded with short MPCF lengths of 50 and 200 µm.

14.
Sci Rep ; 10(1): 405, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941996

RESUMEN

This study investigated differences in the thermo-mechanical properties of thermosetting polymer EPON 826 nanocomposites reinforced by modified nanofillers. Carbon nanotubes (CNTs) were modified by environmentally friendly plasma treatments. Composites containing various nitrogen doped CNTs were investigated by morphological and structural analysis, which confirmed that they provided better dispersion and stronger interfacial interaction with the epoxy matrix. In addition, the dynamic mechanical behavior and thermal conductivity were analyzed to understand the energy transfer mechanism in the nanocomposites. The thermal and mechanical properties of the Inductively coupled plasma treated CNTs (ICP-CNT) reinforced nanocomposites containing a high concentration of quaternary and pyridinic types were higher than that of mechanical shear force plasma treated CNTs (MSF-CNT). A molecular dynamics (MD) simulation was performed to support the experimental results and confirmed that controlling the type of nitrogen doping groups was important for improving the thermo-mechanical characteristics of CNT/epoxy nanocomposites.

15.
Polymers (Basel) ; 10(6)2018 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-30966664

RESUMEN

To meet the demand for next-generation flexible optoelectronic devices, it is crucial to accurately establish the chemical structure-property relationships of new optical polymer films from a theoretical point of view, prior to production. In the current study, computer-aided simulations of newly designed poly(ester imide)s (PEsIs) with various side groups (⁻H, ⁻CH3, and ⁻CF3) and substituted positions were employed to study substituent-derived steric effects on their optical and thermal properties. From calculations of the dihedral angle distribution of the model compounds, it was found that the torsion angle of the C⁻N imide bonds was effectively constrained by the judicious introduction of di-, tetra-, and hexa-substituted aromatic diamines with ⁻CF3 groups. A high degree of fluorination of the PEsI repeating units resulted in weaker intra- and intermolecular conjugations. Their behavior was consistent with the molecular orbital energies obtained using density functional theory (DFT). In addition, various potential energy components of the PEsIs were investigated, and their role in glass-transition behavior was studied. The van der Waals energy (EvdW) played a crucial role in the segmental chain motion, which had an abrupt change near glass-transition temperature (Tg). The more effective steric effect caused by ⁻CF3 substituents at the 3-position of the 4-aminophenyl group significantly improved the chain rigidity, and showed high thermal stability (Tg > 731 K) when compared with the ⁻CH3 substituent at the same position, by highly distorting (89.7°) the conformation of the main chain.

16.
Sci Rep ; 6: 26825, 2016 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-27220415

RESUMEN

One of the most important physical factors related to the thermal conductivity of composites filled with graphene nanoplatelets (GNPs) is the dimensions of the GNPs, that is, their lateral size and thickness. In this study, we reveal the relationship between the thermal conductivity of polymer composites and the realistic size of GNP fillers within the polymer composites (measured using three-dimensional (3D) non-destructive micro X-ray CT analysis) while minimizing the effects of the physical parameters other than size. A larger lateral size and thickness of the GNPs increased the likelihood of the matrix-bonded interface being reduced, resulting in an effective improvement in the thermal conductivity and in the heat dissipation ability of the composites. The thermal conductivity was improved by up to 121% according to the filler size; the highest bulk and in-plane thermal conductivity values of the composites filled with 20 wt% GNPs were 1.8 and 7.3 W/m·K, respectively. The bulk and in-plane thermal conductivity values increased by 650 and 2,942%, respectively, when compared to the thermal conductivity values of the polymer matrix employed (0.24 W/m·K).

17.
Sci Rep ; 5: 9141, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25771823

RESUMEN

The drying process of graphene-polymer composites fabricated by solution-processing for excellent dispersion is time consuming and suffers from a restacking problem. Here, we have developed an innovative method to fabricate polymer composites with well dispersed graphene particles in the matrix resin by using solvent free powder mixing and in-situ polymerization of a low viscosity oligomer resin. We also prepared composites filled with up to 20 wt% of graphene particles by the solvent free process while maintaining a high degree of dispersion. The electrical conductivity of the composite, one of the most significant properties affected by the dispersion, was consistent with the theoretically obtained effective electrical conductivity based on the mean field micromechanical analysis with the Mori-Tanaka model assuming ideal dispersion. It can be confirmed by looking at the statistical results of the filler-to-filler distance obtained from the digital processing of the fracture surface images that the various oxygenated functional groups of graphene oxide can help improve the dispersion of the filler and that the introduction of large phenyl groups to the graphene basal plane has a positive effect on the dispersion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA