Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 23(19): 9003-9010, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37756214

RESUMEN

Nonlinear optical metasurfaces offer a possibility to perform frequency mixing without the phase-matching constraints of bulk nonlinear crystals and with control of the local nonlinear response at a sub-wavelength scale. Nonlinear inter-subband polaritonic metasurfaces created by combining the semiconductor heterostructures with quantum-engineered inter-subband nonlinear response and electromagnetically engineered metal-clad nanoresonators offer by far the largest second-order nonlinear response of all condensed matter systems reported to date. However, the nonlinear optical response of these metasurfaces is limited by optical intensity saturation in the nanoresonator hot spots that prevented the achievement of power conversion efficiencies over 0.2% in three-wave mixing experiments. In this study, we propose and experimentally demonstrate dielectric inter-subband polaritonic metasurfaces for second-harmonic generation that achieve 0.37% power conversion efficiency. Our structure is created by a new design approach that combines dielectric resonators inducing Mie resonant modes with a lattice resonance to achieve a uniform and high field enhancement throughout the meta-atom volume.

2.
Sensors (Basel) ; 22(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35590860

RESUMEN

Standoff chemical detection and identification techniques are necessary for ensuring safe exposure to dangerous substances. Molecular fingerprints of unknown chemicals can be measured using wavelength-tunable quantum cascade lasers operating in long-wavelength infrared. In this work, we present a method that can identify liquid chemicals on a reflective substrate via diffuse reflection spectra measurement from 50 cm away and multiple nonlinear regression analysis. Experimental measurements and numerical analyses were conducted for different chemical surface densities and angles of light incidence using diethyl phthalate (DEP) and dimethyl methylphosphonate (DMMP). Candidate substances can be classified using a deep learning model to reduce analysis time.


Asunto(s)
Láseres de Semiconductores
3.
Nano Lett ; 20(11): 8032-8039, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33112621

RESUMEN

Nonlinear metasurfaces are advancing into a new paradigm of "flat nonlinear optics" owing to the ability to engineer local nonlinear responses in subwavelength-thin films. Recently, attempts have been made to expand the design space of nonlinear metasurfaces through nonlinear chiral responses. However, the development of metasurfaces that display both giant nonlinear circular dichroism and significantly large nonlinear optical response is still an unresolved challenge. Herein, we propose a method that induces giant nonlinear responses with near-unity circular dichroism using polaritonic metasurfaces with optical modes in chiral plasmonic nanocavities coupled with intersubband transitions in semiconductor heterostructures designed to have giant second and third order nonlinear responses. A stark contrast between effective nonlinear susceptibility elements for the two spin states of circularly polarized pump beams was seen in the hybrid structure. Experimentally, near-unity nonlinear circular dichroism and conversion efficiencies beyond 10-4% for second- and third-harmonic generation were achieved simultaneously in a single chip.

4.
Light Sci Appl ; 13(1): 169, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019860

RESUMEN

Nonlinear intersubband polaritonic metasurfaces, which integrate giant nonlinear responses derived from intersubband transitions of multiple quantum wells (MQWs) with plasmonic nanoresonators, not only facilitate efficient frequency conversion at pump intensities on the order of few tens of kW cm-2 but also enable electrical modulation of nonlinear responses at the individual meta-atom level and dynamic beam manipulation. The electrical modulation characteristics of the magnitude and phase of the nonlinear optical response are realized through Stark tuning of the resonant intersubband nonlinearity. In this study, we report, for the first time, experimental implementations of electrical modulation characteristics of mid-infrared third-harmonic generation (THG) using an intersubband polaritonic metasurface based on MQW with electrically tunable third-order nonlinear response. Experimentally, we achieved a 450% modulation depth of the THG signal, 86% suppression of zero-order THG diffraction tuning based on local phase tuning exceeding 180 degrees, and THG beam steering using phase gradients. Our work proposes a new route for electrically tunable flat nonlinear optical elements with versatile functionalities.

5.
Adv Sci (Weinh) ; 10(16): e2207520, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37029461

RESUMEN

Electrically reconfigurable metasurfaces that overcome the static limitations in controlling the fundamental properties of scattered light are opening new avenues for functional flat optics. This work proposes and experimentally demonstrates electrically phase-tunable mid-infrared metasurfaces based on the polaritonic coupling of Stark-tunable intersubband transitions in semiconductor heterostructures and electromagnetic modes in plasmonic nanoresonators. In the applied voltage range of -3 to +3 V, the local phase tuning of the light reflects from the metasurface, which enables the electrical control of the polarization state and wavefront of the reflected wave. Electrical beam polarization control, electrical beam diffraction control, and electrical beam steering are experimentally demonstrated as applications for local phase tunability. The proposed electrically tunable metasurfaces can easily tune the operating wavelength and function at relatively low voltages, which will enable various applications in the mid-infrared region.

6.
Small Methods ; 5(8): e2100277, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34927875

RESUMEN

Surface-enhanced infrared absorption (SEIRA) spectroscopy is a powerful methodology for sensing and identifying small quantities of analyte molecules via coupling between molecular vibrations and an enhanced near-field induced in engineered structures. A metamaterial absorber (MA) is proposed as an efficient SEIRA platform; however, its efficiency is limited because it requires the appropriate insulator thickness and has a limited accessible area for sensing. SEIRA spectroscopy is proposed using an MA with a 10 nm thick vertical nanogap, and a record-high reflection difference SEIRA signal of 36% is experimentally achieved using a 1-octadecanethiol monolayer target molecule. Theoretical and experimental comparative studies are conducted using MAs with three different vertical nanogaps. The MAs with a vertical nanogap are processed using nanoimprint lithography and isotropic dry etching, which allow cost-effective large-area patterning and mass production. The proposed structure may provide promising routes for ultrasensitive sensing and detection applications.

7.
Sci Rep ; 9(1): 7834, 2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-31127173

RESUMEN

We report a sensing platform for surface-enhanced infrared absorption (SEIRA) spectroscopy, based on Fano metamaterials (FMMs) on dielectric nanopedestals. FMMs consist of two parallel gold (Au) nanorod antennas, with a small horizontal coupler attached to one of the nanorod antenna. When placed on SiO2 dielectric nanopedestals, which exhibit strong field enhancements caused by the interference between subradiant and superradiant plasmonic resonances, they provide the highly enhanced E-field intensities formed near the Au nanoantenna, which can provide more enhanced molecular detection signals. Here, the sensing characteristics of FMMs on nanopedestals structure was confirmed by comparison with FMMs on an unetched SiO2 substrate as a control sample. The control FMMs and the FMMs on nanopedestals were carefully designed to excite Fano resonance near the target 1-octadecanethiol (ODT) fingerprint vibrations. The FMMs were fabricated by using nanoimprint lithography and the nanopedestal structures were formed by isotropic dry-etching. The experimental reflection spectra containing the enhanced absorption signals of the ODT monolayer molecules was analyzed using temporal coupled-mode theory. The FMMs on nanopedestals achieved over 7% of reflection difference signal, which was 1.7 times higher signal than the one from the control FMMs. Based on the FMMs on nanopedestal structures proposed in this study, it may be widely applied to future spectroscopy and sensor applications requiring ultrasensitive detection capability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA