Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 186(1): 63-79.e21, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608659

RESUMEN

Metabolism is deeply intertwined with aging. Effects of metabolic interventions on aging have been explained with intracellular metabolism, growth control, and signaling. Studying chronological aging in yeast, we reveal a so far overlooked metabolic property that influences aging via the exchange of metabolites. We observed that metabolites exported by young cells are re-imported by chronologically aging cells, resulting in cross-generational metabolic interactions. Then, we used self-establishing metabolically cooperating communities (SeMeCo) as a tool to increase metabolite exchange and observed significant lifespan extensions. The longevity of the SeMeCo was attributable to metabolic reconfigurations in methionine consumer cells. These obtained a more glycolytic metabolism and increased the export of protective metabolites that in turn extended the lifespan of cells that supplied them with methionine. Our results establish metabolite exchange interactions as a determinant of cellular aging and show that metabolically cooperating cells can shape the metabolic environment to extend their lifespan.


Asunto(s)
Longevidad , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Metionina/metabolismo , Transducción de Señal
2.
PLoS Biol ; 20(12): e3001912, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36455053

RESUMEN

The assimilation, incorporation, and metabolism of sulfur is a fundamental process across all domains of life, yet how cells deal with varying sulfur availability is not well understood. We studied an unresolved conundrum of sulfur fixation in yeast, in which organosulfur auxotrophy caused by deletion of the homocysteine synthase Met17p is overcome when cells are inoculated at high cell density. In combining the use of self-establishing metabolically cooperating (SeMeCo) communities with proteomic, genetic, and biochemical approaches, we discovered an uncharacterized gene product YLL058Wp, herein named Hydrogen Sulfide Utilizing-1 (HSU1). Hsu1p acts as a homocysteine synthase and allows the cells to substitute for Met17p by reassimilating hydrosulfide ions leaked from met17Δ cells into O-acetyl-homoserine and forming homocysteine. Our results show that cells can cooperate to achieve sulfur fixation, indicating that the collective properties of microbial communities facilitate their basic metabolic capacity to overcome sulfur limitation.


Asunto(s)
Cisteína Sintasa , Metionina , Saccharomyces cerevisiae , Cisteína/metabolismo , Cisteína Sintasa/genética , Cisteína Sintasa/metabolismo , Metionina/metabolismo , Proteómica , Racemetionina , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Azufre/metabolismo
3.
Stem Cells ; 37(7): 958-972, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30932271

RESUMEN

Direct in vivo reprogramming of cardiac fibroblasts into myocytes is an attractive therapeutic intervention in resolving myogenic deterioration. Current transgene-dependent approaches can restore cardiac function, but dependence on retroviral delivery and persistent retention of transgenic sequences are significant therapeutic hurdles. Chemical reprogramming has been established as a legitimate method to generate functional cell types, including those of the cardiac lineage. Here, we have extended this approach to generate progenitor cells that can differentiate into endothelial cells and cardiomyocytes using a single inhibitor protocol. Depletion of terminally differentiated cells and enrichment for proliferative cells result in a second expandable progenitor population that can robustly give rise to myofibroblasts and smooth muscle. Deployment of a genome-wide knockout screen with clustered regularly interspaced short palindromic repeats-guide RNA library to identify novel mediators that regulate the reprogramming revealed the involvement of DNA methyltransferase 1-associated protein 1 (Dmap1). Loss of Dmap1 reduced promoter methylation, increased the expression of Nkx2-5, and enhanced the retention of self-renewal, although further differentiation is inhibited because of the sustained expression of Cdh1. Our results hence establish Dmap1 as a modulator of cardiac reprogramming and myocytic induction. Stem Cells 2019;37:958-972.


Asunto(s)
Benzamidas/farmacología , Sistemas CRISPR-Cas , Reprogramación Celular/efectos de los fármacos , Dioxoles/farmacología , Fibroblastos/efectos de los fármacos , Pirazoles/farmacología , Piridinas/farmacología , Proteínas Represoras/genética , Células Madre/efectos de los fármacos , Animales , Cadherinas/genética , Cadherinas/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Reprogramación Celular/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Edición Génica/métodos , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso/citología , Músculo Liso/metabolismo , Miocardio/citología , Miocardio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Cultivo Primario de Células , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Proteínas Represoras/metabolismo , Células Madre/citología , Células Madre/metabolismo
4.
Methods ; 164-165: 29-35, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31034882

RESUMEN

Forward genetic screens are a powerful and unbiased approach for uncovering the genetic basis behind a specific phenotype. Genome-wide mutagenesis followed by phenotypic screening represents the ultimate manifestation of this method, directly linking biological phenomena to its corresponding genetic cause. Whilst this has been successful in lower organisms, deployment of genome-wide screens in mammalian systems has been hampered by both limitations of scale and inefficient bi-allelic mutagenesis. CRISPR-Cas9 technology has now largely resolved these issues, whereby delivery of genome-scale gRNA libraries in the presence of gRNA-guided Cas9 endonuclease enables the generation of mutant cell libraries; the perfect platform for performing phenotypic screens. Although the tools are now available for virtually any molecular biology laboratory to conduct such screens, many researchers are daunted by the sheer complexity and scale at which such experiments are performed. This Review will address these concerns, presenting a contextual and practical guide to deploying CRISPR-KO screens in mammalian systems. We will discuss key considerations required in all aspects of screening from initiation to conclusion, which will enable researchers to conduct screens of their own, maximising the potential of this powerful technology.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Biblioteca Genómica , Genómica/métodos , Animales , Técnicas de Cultivo de Célula/métodos , Línea Celular , Pruebas Genéticas/métodos , Humanos , ARN Guía de Kinetoplastida/genética
5.
Development ; 143(17): 3050-60, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27578176

RESUMEN

Phosphatidylinositide 3 kinases (PI3Ks) and their downstream mediators AKT and mammalian target of rapamycin (mTOR) constitute the core components of the PI3K/AKT/mTOR signalling cascade, regulating cell proliferation, survival and metabolism. Although these functions are well-defined in the context of tumorigenesis, recent studies - in particular those using pluripotent stem cells - have highlighted the importance of this pathway to development and cellular differentiation. Here, we review the recent in vitro and in vivo evidence for the role PI3K/AKT/mTOR signalling plays in the control of pluripotency and differentiation, with a particular focus on the molecular mechanisms underlying these functions.


Asunto(s)
Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Proliferación Celular/genética , Supervivencia Celular/genética , Humanos , Fosfatidilinositol 3-Quinasas/genética , Células Madre Pluripotentes/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/genética
6.
Stem Cells ; 32(8): 2111-22, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24740933

RESUMEN

Telomere repeat binding factor 2 (TRF2) is a component of the shelterin complex that is known to bind and protect telomeric DNA, yet the detection of TRF2 in extra-telomeric regions of chromosomes suggests other roles for TRF2 besides telomere protection. Here, we demonstrate that TRF2 plays a critical role in antagonizing the repressive function of neuron-restrictive silencer factor, also known as repressor element-1 silencing transcription factor (REST), during the neural differentiation of human embryonic stem cells (hESCs) by enhancing the expression of a truncated REST splice isoform we term human REST4 (hREST4) due to its similarity to rodent REST4. We show that TRF2 is specifically upregulated during hESC neural differentiation concordantly with an increase in the expression of hREST4 and that both proteins are highly expressed in NPCs. Overexpression of TRF2 in hESCs increases hREST4 levels and induces their neural differentiation, whereas TRF2 knockdown in hESCs and NPCs reduces hREST4 expression, hindering their ability to differentiate to the neural lineage. Concurrently, we show that TRF2 directly interacts with the C-terminal of hREST4 through its TRF2 core binding motif [F/Y]xL, protecting hREST4 from ubiquitin-mediated proteasomal degradation and consequently furthering neural induction. Thus, the TRF2-mediated counterbalance between hREST4 and REST is vital for both the generation and maintenance of NPCs, suggesting an important role for TRF2 in both neurogenesis and function of the central nervous system.


Asunto(s)
Diferenciación Celular/fisiología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Proteínas Represoras/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Línea Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Citometría de Flujo , Humanos , Immunoblotting , Inmunohistoquímica , Hibridación Fluorescente in Situ , Células-Madre Neurales/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción Genética , Regulación hacia Arriba
7.
Nat Microbiol ; 7(4): 542-555, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35314781

RESUMEN

Microbial communities are composed of cells of varying metabolic capacity, and regularly include auxotrophs that lack essential metabolic pathways. Through analysis of auxotrophs for amino acid biosynthesis pathways in microbiome data derived from >12,000 natural microbial communities obtained as part of the Earth Microbiome Project (EMP), and study of auxotrophic-prototrophic interactions in self-establishing metabolically cooperating yeast communities (SeMeCos), we reveal a metabolically imprinted mechanism that links the presence of auxotrophs to an increase in metabolic interactions and gains in antimicrobial drug tolerance. As a consequence of the metabolic adaptations necessary to uptake specific metabolites, auxotrophs obtain altered metabolic flux distributions, export more metabolites and, in this way, enrich community environments in metabolites. Moreover, increased efflux activities reduce intracellular drug concentrations, allowing cells to grow in the presence of drug levels above minimal inhibitory concentrations. For example, we show that the antifungal action of azoles is greatly diminished in yeast cells that uptake metabolites from a metabolically enriched environment. Our results hence provide a mechanism that explains why cells are more robust to drug exposure when they interact metabolically.


Asunto(s)
Interacciones Microbianas , Microbiota , Tolerancia a Medicamentos , Redes y Vías Metabólicas , Metaboloma
8.
Nat Biotechnol ; 39(7): 846-854, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33767396

RESUMEN

Accurate quantification of the proteome remains challenging for large sample series and longitudinal experiments. We report a data-independent acquisition method, Scanning SWATH, that accelerates mass spectrometric (MS) duty cycles, yielding quantitative proteomes in combination with short gradients and high-flow (800 µl min-1) chromatography. Exploiting a continuous movement of the precursor isolation window to assign precursor masses to tandem mass spectrometry (MS/MS) fragment traces, Scanning SWATH increases precursor identifications by ~70% compared to conventional data-independent acquisition (DIA) methods on 0.5-5-min chromatographic gradients. We demonstrate the application of ultra-fast proteomics in drug mode-of-action screening and plasma proteomics. Scanning SWATH proteomes capture the mode of action of fungistatic azoles and statins. Moreover, we confirm 43 and identify 11 new plasma proteome biomarkers of COVID-19 severity, advancing patient classification and biomarker discovery. Thus, our results demonstrate a substantial acceleration and increased depth in fast proteomic experiments that facilitate proteomic drug screens and clinical studies.


Asunto(s)
Proteómica/métodos , Espectrometría de Masas en Tándem , Arabidopsis/metabolismo , Biomarcadores/metabolismo , COVID-19/sangre , COVID-19/diagnóstico , Línea Celular , Humanos , Péptidos/análisis , Proteoma/análisis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Índice de Severidad de la Enfermedad
9.
Nat Metab ; 3(11): 1521-1535, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34799698

RESUMEN

Eukaryotic cells can survive the loss of their mitochondrial genome, but consequently suffer from severe growth defects. 'Petite yeasts', characterized by mitochondrial genome loss, are instrumental for studying mitochondrial function and physiology. However, the molecular cause of their reduced growth rate remains an open question. Here we show that petite cells suffer from an insufficient capacity to synthesize glutamate, glutamine, leucine and arginine, negatively impacting their growth. Using a combination of molecular genetics and omics approaches, we demonstrate the evolution of fast growth overcomes these amino acid deficiencies, by alleviating a perturbation in mitochondrial iron metabolism and by restoring a defect in the mitochondrial tricarboxylic acid cycle, caused by aconitase inhibition. Our results hence explain the slow growth of mitochondrial genome-deficient cells with a partial auxotrophy in four amino acids that results from distorted iron metabolism and an inhibited tricarboxylic acid cycle.


Asunto(s)
Metabolismo Energético , Genoma Mitocondrial , Mitocondrias/genética , Mitocondrias/metabolismo , Levaduras/genética , Levaduras/metabolismo , Aminoácidos/metabolismo , Biomasa , Proliferación Celular , Ciclo del Ácido Cítrico , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Potencial de la Membrana Mitocondrial , Mutación , Fenotipo , Relación Estructura-Actividad
10.
Cell Rep ; 24(2): 489-502, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29996108

RESUMEN

The genetic basis of naive pluripotency maintenance and loss is a central question in embryonic stem cell biology. Here, we deploy CRISPR-knockout-based screens in mouse embryonic stem cells to interrogate this question through a genome-wide, non-biased approach using the Rex1GFP reporter as a phenotypic readout. This highly sensitive and efficient method identified genes in diverse biological processes and pathways. We uncovered a key role for negative regulators of mTORC1 in maintenance and exit from naive pluripotency and provided an integrated account of how mTORC1 activity influences naive pluripotency through Gsk3. Our study therefore reinforces Gsk3 as the central node and provides a comprehensive, data-rich resource that will improve our understanding of mechanisms regulating pluripotency and stimulate avenues for further mechanistic studies.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Técnicas de Inactivación de Genes , Genoma , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Animales , Diferenciación Celular/genética , Autorrenovación de las Células , Regulación del Desarrollo de la Expresión Génica , Glucógeno Sintasa Quinasa 3/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , Células Madre Embrionarias de Ratones , Fenotipo , Transcriptoma/genética
11.
Nat Commun ; 6: 7212, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25998442

RESUMEN

Crosstalk between the phosphatidylinositol 3-kinase (PI3K) and the transforming growth factor-ß signalling pathways play an important role in regulating many cellular functions. However, the molecular mechanisms underpinning this crosstalk remain unclear. Here, we report that PI3K signalling antagonizes the Activin-induced definitive endoderm (DE) differentiation of human embryonic stem cells by attenuating the duration of Smad2/3 activation via the mechanistic target of rapamycin complex 2 (mTORC2). Activation of mTORC2 regulates the phosphorylation of the Smad2/3-T220/T179 linker residue independent of Akt, CDK and Erk activity. This phosphorylation primes receptor-activated Smad2/3 for recruitment of the E3 ubiquitin ligase Nedd4L, which in turn leads to their degradation. Inhibition of PI3K/mTORC2 reduces this phosphorylation and increases the duration of Smad2/3 activity, promoting a more robust mesendoderm and endoderm differentiation. These findings present a new and direct crosstalk mechanism between these two pathways in which mTORC2 functions as a novel and critical mediator.


Asunto(s)
Activinas/metabolismo , Células Madre Embrionarias/metabolismo , Complejos Multiproteicos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Smad Reguladas por Receptores/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Endodermo/citología , Células HEK293 , Humanos , Diana Mecanicista del Complejo 2 de la Rapamicina , Fosforilación , Receptor Cross-Talk
12.
Tissue Eng Part A ; 19(3-4): 360-7, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23003670

RESUMEN

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) provide an unlimited source for the generation of human hepatocytes, owing to their indefinite self-renewal and pluripotent properties. Both hESC-/iPSC-derived hepatocytes hold great promise in treating liver diseases as potential candidates for cell replacement therapies or as an in vitro platform to conduct new drug trials. It has been previously demonstrated that the initiation of hESC differentiation in monolayer cultures increases the generation of definitive endoderm (DE) and subsequently of hepatocyte differentiation. However, monolayer culture may hinder the maturation of hESC-derived hepatocytes, since such two-dimensional (2D) conditions do not accurately reflect the complex nature of three-dimensional (3D) hepatocyte specification in vivo. Here, we report the sequential application of 2D and 3D culture systems to differentiate hESCs to hepatocytes. Human ESCs were initially differentiated in a monolayer culture to DE cells, which were then inoculated into Algimatrix scaffolds. Treatments of hESC-DE cells with a ROCK inhibitor before and after inoculation dramatically enhanced their survival and the formation of spheroids, which are distinct from HepG2 carcinoma cells. In comparison with monolayer culture alone, sequential 2D and 3D cultures significantly improved hepatocyte differentiation and function. Our results demonstrate that hESC-DE cells can be incorporated into Algimatrix 3D culture systems to enhance hepatocyte differentiation and function.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/instrumentación , Células Madre Embrionarias/citología , Endodermo/citología , Hepatocitos/citología , Ingeniería de Tejidos/instrumentación , Andamios del Tejido , Técnicas de Cultivo Celular por Lotes/métodos , Diferenciación Celular , Línea Celular , Proliferación Celular , Supervivencia Celular , Células Madre Embrionarias/fisiología , Endodermo/fisiología , Diseño de Equipo , Hepatocitos/fisiología , Humanos , Ingeniería de Tejidos/métodos
13.
PLoS One ; 7(5): e37129, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22615918

RESUMEN

One of the challenges in studying early differentiation of human embryonic stem cells (hESCs) is being able to discriminate the initial differentiated cells from the original pluripotent stem cells and their committed progenies. It remains unclear how a pluripotent stem cell becomes a lineage-specific cell type during early development, and how, or if, pluripotent genes, such as Oct4 and Sox2, play a role in this transition. Here, by studying the dynamic changes in the expression of embryonic surface antigens, we identified the sequential loss of Tra-1-81 and SSEA4 during hESC neural differentiation and isolated a transient Tra-1-81(-)/SSEA4(+) (TR-/S4+) cell population in the early stage of neural differentiation. These cells are distinct from both undifferentiated hESCs and their committed neural progenitor cells (NPCs) in their gene expression profiles and response to extracellular signalling; they co-express both the pluripotent gene Oct4 and the neural marker Pax6. Furthermore, these TR-/S4+ cells are able to produce cells of both neural and non-neural lineages, depending on their environmental cues. Our results demonstrate that expression of the pluripotent factor Oct4 is progressively downregulated and is accompanied by the gradual upregulation of neural genes, whereas the pluripotent factor Sox2 is consistently expressed at high levels, indicating that these pluripotent factors may play different roles in the regulation of neural differentiation. The identification of TR-S4+ cells provides a cell model for further elucidation of the molecular mechanisms underlying hESC neural differentiation.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Pluripotentes/citología , Antígenos de Superficie/genética , Antígenos de Superficie/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Regulación hacia Abajo , Células Madre Embrionarias/metabolismo , Endodermo/citología , Endodermo/metabolismo , Endodermo/fisiología , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Neuronas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Células Madre Pluripotentes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Antígenos Embrionarios Específico de Estadio/genética , Antígenos Embrionarios Específico de Estadio/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA