Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Mater ; 36(38): e2408706, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39016618

RESUMEN

Electrolyte additives are efficient to improve the performance of aqueous zinc-ion batteries (AZIBs), yet the current electrolyte additives are limited to fully water-soluble additives (FWAs) and water-insoluble additives (WIAs). Herein, trace slightly water-soluble additives (SWAs) of zinc acetylacetonate (ZAA) were introduced to aqueous ZnSO4 electrolytes. The SWA system of ZAA is composed of a FWA part and a WIA part in a dynamic manner of dissolution equilibrium. The FWA part exists as soluble small molecules, which efficiently regulate Zn2+ ion solvation structure, while the WIA part exists as insoluble nano-colloids, which in-situ form a thick and robust solid electrolyte interface film on zinc metal anodes (ZMAs). Such small molecular/nano-colloidal multiscale electrolyte additives of ZAA are capable to not only improve ionic conductivity and transference number but also inhibit corrosion, hydrogen evolution, and Zn dendrite on ZMAs. The SWA-based Zn∥Zn half battery delivers a superb cumulative plating capacity of 15 Ah cm-2 under 1 mAh cm-2 and 20 mA cm-2, and the SWA-based NH4V4O10∥Zn pouch cell obtains a capacity retention of 67.8% within 4000 cycles under 4 A g-1. The study provides innovative insights for rational design of electrolyte additives, which may pave the way for the practicality of AZIBs.

2.
J Phys Chem B ; 127(41): 8974-8981, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37796864

RESUMEN

Single-entity collisional electrochemistry (SECE), a subfield of single-entity electrochemistry, enables directly characterizing entities and particles in the electrolyte solution at the single-entity resolution. Blockade SECE at the traditional solid ultramicroelectrode (UME)/electrolyte interface suffers from a limitation: only redox-inactive particles can be studied. The wide application of the classical Coulter counter is restricted by the rapid translocation of entities through the orifice, which results in a remarkable proportion of undetected signals. In response, the blocking effect of single charged conductive or insulating nanoparticles (NPs) at low concentrations for ion transfer (IT) at a miniaturized polarized liquid/liquid interface was successfully observed. Since the particles are adsorbed at the liquid/liquid interface, our method also solves the problem of the Coulter counter having a too-fast orifice translocation rate. The decreasing quantal staircase/step current transients are from landings (controlled by electromigration) of either conductive or insulating NPs onto the interface. This interfacial NP assembly shields the IT flux. The size of each NP can be calculated by the step height. The particle size measured by dynamic light scattering (DLS) is used for comparison with that calculated from electrochemical blocking events, which is in fairly good agreement. In short, the blocking effect of IT by single entities at micro- or submicro-liquid/liquid interface has been proven experimentally and is of great reference in single-entity detection.

3.
Adv Mater ; 33(5): e2006234, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33306233

RESUMEN

A large amount of low-grade heat (<100 °C) is produced in electrical devices and mostly wasted. This type of heat without effective dissipation also causes compromised device performance, reliability, and lifespan. To tackle these issues, a redox targeting (RT)-based flow cell with judiciously designed thermoelectrically active redox materials is demonstrated for the first time for efficient heat-to-electricity conversion through a thermally regenerative electrochemical cycle (TREC). Compared with the conventional TREC systems, the RT-based flow cell not only reveals considerably enhanced thermoelectric efficiency, but the flow of redox fluids also provides a cooling function to the system. In this work, solid material Ni0.2 Co0.8 (OH)2 and redox mediator [Fe(CN)6 ]4-/3- , both of which have negative temperature coefficient and share identical redox potential, are paired via RT-reactions to boost the capacity and meanwhile thermoelectric efficiency of a [Fe(CN)6 ]4-/3- /Zn0/2+ -based flow cell. Upon operating over the TREC cycle, the RT-based flow cell converts heat to electricity at an unprecedented absolute thermoelectric efficiency of 3.61% in the temperature range of 25-55 °C.

4.
Adv Sci (Weinh) ; 8(1): 2002722, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33437582

RESUMEN

Zinc-ion batteries (ZIBs) have attracted intensive attention due to the low cost, high safety, and abundant resources. However, up to date, challenges still exist in searching for cathode materials with high working potential, excellent electrochemical activity, and good structural stability. To address these challenges, microstructure engineering has been widely investigated to modulate the physical properties of cathode materials, and thus boosts the electrochemical performances of ZIBs. Here, the recent research efforts on the microstructural engineering of various ZIB cathode materials are mainly focused upon, including composition and crystal structure selection, crystal defect engineering, interlayer engineering, and morphology design. The dependency of cathode performance on aqueous electrolyte for ZIB is further discussed. Finally, future perspectives and challenges on microstructure engineering of cathode materials for ZIBs are provided. It is aimed to provide a deep understanding of the microstructure engineering effect on Zn2+ storage performance.

5.
Nat Commun ; 8: 14629, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28262666

RESUMEN

Low cost, highly efficient and safe devices for energy storage have long been desired in our society. Among these devices, electrochemical batteries with alkali metal anodes have attracted worldwide attention. However, the practical application of such systems is limited by dendrite formation and low cycling efficiency of alkali metals. Here we report a class of liquid anodes fabricated by dissolving sodium metal into a mixed solution of biphenyl and ethers. Such liquid anodes are highly safe and have a low redox potential of 0.09 V versus sodium, exhibiting a high conductivity of 1.2 × 10-2 S cm-1. When coupled with polysulfides dissolved in dimethyl sulfoxide as the cathode, a battery is demonstrated to sustain over 3,500 cycles without measureable capacity loss at room temperature. This work provides a base for exploring a family of liquid anodes for rechargeable batteries that potentially meet the requirements for grid-scale electrical energy storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA