Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(3): e2216672120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36630451

RESUMEN

Cost-effective fabrication of mechanically flexible low-power electronics is important for emerging applications including wearable electronics, artificial intelligence, and the Internet of Things. Here, solution-processed source-gated transistors (SGTs) with an unprecedented intrinsic gain of ~2,000, low saturation voltage of +0.8 ± 0.1 V, and a ~25.6 µW power consumption are realized using an indium oxide In2O3/In2O3:polyethylenimine (PEI) blend homojunction with Au contacts on Si/SiO2. Kelvin probe force microscopy confirms source-controlled operation of the SGT and reveals that PEI doping leads to more effective depletion of the reverse-biased Schottky contact source region. Furthermore, using a fluoride-doped AlOx gate dielectric, rigid (on a Si substrate) and flexible (on a polyimide substrate) SGTs were fabricated. These devices exhibit a low driving voltage of +2 V and power consumption of ~11.5 µW, yielding inverters with an outstanding voltage gain of >5,000. Furthermore, electrooculographic (EOG) signal monitoring can now be demonstrated using an SGT inverter, where a ~1.0 mV EOG signal is amplified to over 300 mV, indicating significant potential for applications in wearable medical sensing and human-computer interfacing.


Asunto(s)
Inteligencia Artificial , Conducción de Automóvil , Humanos , Dióxido de Silicio , Suministros de Energía Eléctrica , Óxidos , Polietileneimina
2.
Small ; 20(11): e2306749, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38078789

RESUMEN

Stretchable electronics have attracted tremendous attention amongst academic and industrial communities due to their prospective applications in personal healthcare, human-activity monitoring, artificial skins, wearable displays, human-machine interfaces, etc. Other than mechanical robustness, stable performances under complex strains in these devices that are not for strain sensing are equally important for practical applications. Here, a comprehensive summarization of recent advances in stretchable electronics with strain-resistive performance is presented. First, detailed overviews of intrinsically strain-resistive stretchable materials, including conductors, semiconductors, and insulators, are given. Then, systematic representations of advanced structures, including helical, serpentine, meshy, wrinkled, and kirigami-based structures, for strain-resistive performance are summarized. Next, stretchable arrays and circuits with strain-resistive performance, that integrate multiple functionalities and enable complex behaviors, are introduced. This review presents a detailed overview of recent progress in stretchable electronics with strain-resistive performances and provides a guideline for the future development of stretchable electronics.

3.
Nat Mater ; 21(5): 564-571, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35501364

RESUMEN

Realizing fully stretchable electronic materials is central to advancing new types of mechanically agile and skin-integrable optoelectronic device technologies. Here we demonstrate a materials design concept combining an organic semiconductor film with a honeycomb porous structure with biaxially prestretched platform that enables high-performance organic electrochemical transistors with a charge transport stability over 30-140% tensional strain, limited only by metal contact fatigue. The prestretched honeycomb semiconductor channel of donor-acceptor polymer poly(2,5-bis(2-octyldodecyl)-3,6-di(thiophen-2-yl)-2,5-diketo-pyrrolopyrrole-alt-2,5-bis(3-triethyleneglycoloxy-thiophen-2-yl) exhibits high ion uptake and completely stable electrochemical and mechanical properties over 1,500 redox cycles with 104 stretching cycles under 30% strain. Invariant electrocardiogram recording cycles and synapse responses under varying strains, along with mechanical finite element analysis, underscore that the present stretchable organic electrochemical transistor design strategy is suitable for diverse applications requiring stable signal output under deformation with low power dissipation and mechanical robustness.


Asunto(s)
Electrónica , Transistores Electrónicos , Polímeros/química , Semiconductores , Tiofenos/química
4.
Sensors (Basel) ; 23(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37571694

RESUMEN

Dynamic glucose monitoring is important to reduce the risk of metabolic diseases such as diabetes. Wearable biosensors based on organic electrochemical transistors (OECTs) have been developed due to their excellent signal amplification capabilities and biocompatibility. However, traditional wearable biosensors are fabricated on flat substrates with limited gas permeability, resulting in the inefficient evaporation of sweat, reduced wear comfort, and increased risk of inflammation. Here, we proposed breathable OECT-based glucose sensors by designing a porous structure to realize optimal breathable and stretchable properties. The gas permeability of the device and the relationship between electrical properties under different tensile strains were carefully investigated. The OECTs exhibit exceptional electrical properties (gm ~1.51 mS and Ion ~0.37 mA) and can retain up to about 44% of their initial performance even at 30% stretching. Furthermore, obvious responses to glucose have been demonstrated in a wide range of concentrations (10-7-10-4 M) even under 30% strain, where the normalized response to 10-4 M is 26% and 21% for the pristine sensor and under 30% strain, respectively. This work offers a new strategy for developing advanced breathable and wearable bioelectronics.


Asunto(s)
Técnicas Biosensibles , Glucemia , Automonitorización de la Glucosa Sanguínea , Porosidad , Técnicas Biosensibles/métodos , Glucosa , Transistores Electrónicos
5.
Opt Lett ; 47(13): 3375-3378, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776629

RESUMEN

Suppressing the dark current is an effective strategy to boost the detection capability of organic photodetectors (OPDs). In this Letter, the water transfer printing method is demonstrated in double bulk heterojunction (BHJ) OPDs, which is solvent-independent rather than the traditional sequential spin-coating method, enabling the elimination of the negative effects of solvents on the underlying film and the suppressing of the dark current. As a result, a photo detectivity up to 1012 Jones was obtained in the wide spectral range of 400-900 nm with a small working area of 3 mm2.

6.
J Am Chem Soc ; 143(16): 6123-6139, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33848146

RESUMEN

The end-capping group (EG) is the essential electron-withdrawing component of nonfullerene acceptors (NFAs) in bulk heterojunction (BHJ) organic solar cells (OSCs). To systematically probe the impact of two frequent EG functionalization strategies, π-extension and halogenation, in A-DAD-A type NFAs, we synthesized and characterized four such NFAs: BT-BIC, LIC, L4F, and BO-L4F. To assess the relative importance of these strategies, we contrast these NFAs with the baseline acceptors, Y5 and Y6. Up to 16.6% power conversion efficiency (PCE) in binary inverted OSCs with BT-BO-L4F combining π-extension and halogenation was achieved. When these two factors are combined, the effect on optical absorption is cumulative. Single-crystal π-π stacking distances are similar for the EG strategies of π-extension. Increasing the alkyl substituent length from BT-L4F to BT-BO-L4F significantly alters the packing motif and eliminates the EG core interactions of BT-L4F. Electronic structure computations reveal some of the largest NFA π-π electronic couplings observed to date, 103.8 meV in BT-L4F and 47.5 meV in BT-BO-L4F. Computed electronic reorganization energies, 132 and 133 meV for BT-L4F and BT-BO-L4F, respectively, are also lower than Y6 (150 meV). BHJ blends show preferential π-face-on orientation, and both fluorination and π-extension increase NFA crystallinity. Femto/nanosecond transient absorption spectroscopy (fs/nsTA) and integrated photocurrent device analysis (IPDA) indicate that π-extension modifies the phase separation to enhance film ordering and carrier mobility, while fluorination suppresses unimolecular recombination. This systematic study highlights the synergistic effects of NFA π-extension and fluorination in affording efficient OSCs and provides insights into designing next-generation materials.

7.
Nanotechnology ; 32(32)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33957611

RESUMEN

Solution-processed organic thin-film transistors (OTFTs) are regarded as the promising candidates for low-cost gas sensors due to their advantages of high throughput, large-area and sensitive to various gas analytes. Microstructure control of organic active layers in OTFTs is an effective route to improve the sensing performance. In this work, we report a simple method to modify the morphology of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) thin films via doping gold nanorods (Au NRs) for enhancing the performance of the corresponding OTFT sensors for nitrogen dioxide (NO2) detection. With the optimized doping ratio of Au nanorods, the TIPS-pentacene OTFT snesors not only exhibit a 3-fold increase in mobility, but also obtain a high sensitivity of 70% to 18 ppm NO2with a detection limit of 270 ppb. The microstructures and morphologies of the modified TIPS-pentacene thin film characterized by atomic force microscopy and field scanning electron microscope. The experimental results indicate that the proper addition of Au NRs could effectively regulate the grain size of TIPS-pentacene, and therein control the density of grain boundaries during the crystallization, which is essential for the high-performance gas sensors.

8.
Chem Rev ; 119(1): 3-35, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30403474

RESUMEN

The strong and controllable chemical sensitivity of organic semiconductors (OSCs) and the amplification capability of transistors in circuits make use of OSC-based field-effect transistors compelling for chemical sensors. Analytes detected and assayed range from few-atom gas-phase molecules that may have adverse health and security implications to biomacromolecules (proteins, nucleic acids) that may be markers for physiological processes and medical conditions. This review highlights recent progress in organic field-effect transistor (OFET) chemical sensors, emphasizing advances from the past 5 years and including aspects of OSC morphology and the role of adjacent dielectrics. Design elements of the OSCs and various formats for the devices are illustrated and evaluated. Challenges associated with the present state of the art and future opportunities are also discussed.


Asunto(s)
Técnicas Biosensibles , Ácidos Nucleicos/análisis , Compuestos Orgánicos/química , Proteínas/análisis , Transistores Electrónicos , Semiconductores
9.
Sensors (Basel) ; 21(1)2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33401403

RESUMEN

The microstructure of the organic semiconductor (OSC) active layer is one of the crucial topics to improve the sensing performance of gas sensors. Herein, we introduce a simple solvent vapor annealing (SVA) process to control 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) OSC films morphology and thus yields high-sensitivity nitrogen organic thin-film transistor (OTFT)-based nitrogen dioxide (NO2) sensors. Compared to pristine devices, the toluene SVA-treated devices exhibit an order of magnitude responsivity enhancement to 10 ppm NO2, further with a limit of detection of 148 ppb. Systematic studies on the microstructure of the TIPS-pentacene films reveal the large density grain boundaries formed by the SVA process, improving the capability for the adsorption of gas molecules, thus causing high-sensitivity to NO2. This simple SVA processing strategy provides an effective and reliable access for realizing high-sensitivity OTFT NO2 sensors.

10.
J Am Chem Soc ; 142(12): 5487-5492, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32053356

RESUMEN

Mechanically flexible films of the highly crystalline core-cyanated perylenediimide (PDIF-CN2) molecular semiconductor are achieved via a novel grain boundary plasticization strategy in which a specially designed polymeric binder (PB) is used to connect crystallites at the grain boundaries. The new PB has a naphthalenediimide-dithiophene π-conjugated backbone end-functionalized with PDI units. In contrast to conventional polymer-small molecule blends where distinct phase separation occurs, this blend film with plasticized grain boundaries exhibits a morphology typical of homogeneous PDIF-CN2 films which is preserved upon bending at radii as small as 2 mm. Thin-film transistors fabricated with PB/PDIF-CN2 blends exhibit substantial electron mobilities even after repeated bending. This design represents a new approach to realizing flexible and textured semiconducting π-electron films with good mechanical and charge transport properties.

11.
J Am Chem Soc ; 142(28): 12440-12452, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32539371

RESUMEN

The frequency-dependent capacitance of low-temperature solution-processed metal oxide (MO) dielectrics typically yields unreliable and unstable thin-film transistor (TFT) performance metrics, which hinders the development of next-generation roll-to-roll MO electronics and obscures intercomparisons between processing methodologies. Here, capacitance values stable over a wide frequency range are achieved in low-temperature combustion-synthesized aluminum oxide (AlOx) dielectric films by fluoride doping. For an optimal F incorporation of ∼3.7 atomic % F, the F:AlOx film capacitance of 166 ± 11 nF/cm2 is stable over a 10-1-104 Hz frequency range, far more stable than that of neat AlOx films (capacitance = 336 ± 201 nF/cm2) which falls from 781 ± 85 nF/cm2 to 104 ± 4 nF/cm2 over this frequency range. Importantly, both n-type/inorganic and p-type/organic TFTs exhibit reliable electrical characteristics with minimum hysteresis when employing the F:AlOx dielectric with ∼3.7 atomic % F. Systematic characterization of film microstructural/compositional and electronic/dielectric properties by X-ray photoelectron spectroscopy, time-of-fight secondary ion mass spectrometry, cross-section transmission electron microscopy, solid-state nuclear magnetic resonance, and UV-vis absorption spectroscopy reveal that fluoride doping generates AlOF, which strongly reduces the mobile hydrogen content, suppressing polarization mechanisms at low frequencies. Thus, this work provides a broadly applicable anion doping strategy for the realization of high-performance solution-processed metal oxide dielectrics for both organic and inorganic electronics applications.

12.
Opt Lett ; 45(20): 5860-5863, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33057303

RESUMEN

In this Letter, the reduction of undesired high dark current caused by defect states in solution-processed perovskite for photodetectors is realized with the introduction of an ultrathin buffer layer of PBDB-T:IHIC bulk heterojunction (BHJ). By controlling the concentration of BHJ precisely during a solution process, a low dark current density (Jd) of 1.01×10-4mA/cm2 and a high specific detectivity (D∗) of 2.61×1012Jones were achieved. It was found that low Jd is attributed to the passivation effect of BHJ on defect states, where BHJ acts as a Lewis base and interacts with unbonded Pb2+ in perovskite. This Letter demonstrates that the application of ultrathin organic BHJ has significant potential for the manufacturing of high-performance optoelectronic devices.

13.
J Am Chem Soc ; 140(16): 5457-5473, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29617121

RESUMEN

Charge transport and film microstructure evolution are investigated in a series of polyethylenimine (PEI)-doped (0.0-6.0 wt%) amorphous metal oxide (MO) semiconductor thin film blends. Here, PEI doping generality is broadened from binary In2O3 to ternary (e.g., In+Zn in IZO, In+Ga in IGO) and quaternary (e.g., In+Zn+Ga in IGZO) systems, demonstrating the universality of this approach for polymer electron doping of MO matrices. Systematic comparison of the effects of various metal ions on the electronic transport and film microstructure of these blends are investigated by combined thin-film transistor (TFT) response, AFM, XPS, XRD, X-ray reflectivity, and cross-sectional TEM. Morphological analysis reveals that layered MO film microstructures predominate in PEI-In2O3, but become less distinct in IGO and are not detectable in IZO and IGZO. TFT charge transport measurements indicate a general coincidence of a peak in carrier mobility (µpeak) and overall TFT performance at optimal PEI doping concentrations. Optimal PEI loadings that yield µpeak values depend not only on the MO elemental composition but also, equally important, on the metal atomic ratios. By investigating the relationship between the MO energy levels and PEI doping by UPS, it is concluded that the efficiency of PEI electron-donation is highly dependent on the metal oxide matrix work function in cases where film morphology is optimal, as in the IGO compositions. The results of this investigation demonstrate the broad generality and efficacy of PEI electron doping applied to electronically functional metal oxide systems and that the resulting film microstructure, morphology, and energy level modifications are all vital to understanding charge transport in these amorphous oxide blends.

14.
Opt Lett ; 43(18): 4502-4505, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-30211901

RESUMEN

A heterojunction consisting of poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-(4,4'-(N-(4-butylphenyl)))] (TFB) and aluminum tris(8-hydroxyquinolinate) (Alq3) is applied for fabricating an organic light-emitting photodetector (OLEP), where TFB and Alq3 behave as an ultraviolet response center and a green light emitter, respectively. The OLEP shows a detectivity of 1.4×1011 Jones and a luminance of 11,569 cd/m2. Thermal active delay fluorescent material is introduced in the TFB matrix to improve photodetection property. As a result, the optimized device exhibits a 2857% boost in a maximum detectivity of 4.0×1012 Jones without trading off the electroluminescence performance, exhibiting a high luminance of 13,737 cd/m2.

15.
Opt Lett ; 43(14): 3212-3215, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-30004534

RESUMEN

In this Letter, a transparent organic photodetector (OPD) with a property of ultraviolet sensitivity is demonstrated by using an inverted architecture. A conjugated polymer of ploy [(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl)fluorene)] is introduced to modify the energy level and morphology between ZnO and organic optoelectronic material. As a result, at a wavelength of 350 nm and a bias of -1 V, the photodetectivity of 1012 Jones from both sides of the transparent device is obtained with a working area of 1 cm2. Moreover, an optical simulation is applied to analyze the optical electric field distribution inside the OPD.

16.
Proc Natl Acad Sci U S A ; 112(11): 3217-22, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25733848

RESUMEN

Metal-oxide (MO) semiconductors have emerged as enabling materials for next generation thin-film electronics owing to their high carrier mobilities, even in the amorphous state, large-area uniformity, low cost, and optical transparency, which are applicable to flat-panel displays, flexible circuitry, and photovoltaic cells. Impressive progress in solution-processed MO electronics has been achieved using methodologies such as sol gel, deep-UV irradiation, preformed nanostructures, and combustion synthesis. Nevertheless, because of incomplete lattice condensation and film densification, high-quality solution-processed MO films having technologically relevant thicknesses achievable in a single step have yet to be shown. Here, we report a low-temperature, thickness-controlled coating process to create high-performance, solution-processed MO electronics: spray-combustion synthesis (SCS). We also report for the first time, to our knowledge, indium-gallium-zinc-oxide (IGZO) transistors having densification, nanoporosity, electron mobility, trap densities, bias stability, and film transport approaching those of sputtered films and compatible with conventional fabrication (FAB) operations.

17.
J Am Chem Soc ; 139(7): 2734-2740, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28127956

RESUMEN

Efficient charge transport in organic semiconductors is essential for construction of high performance optoelectronic devices. Herein, for the first time, we demonstrate that poly(amic acid) (PAA), a facilely deposited and annealing-free dielectric layer, can tailor the growth of organic semiconductor films with large area and high crystallinity toward efficient charge transport and high mobility in their thin film transistors. Pentacene is used as a model system to demonstrate the concept with mobility up to 30.6 cm2 V-1 s-1, comparable to its high quality single crystal devices. The structure of PAA has corrugations with OH groups pointing out of the surface, and the presence of an amide bond further allows adjacent polymer strands to interact via hydrogen bonding, leading to a self-rippled surface perpendicular to the corrugation. On the other hand, the strong polar groups (-COOH/-CONH) of PAA could provide repulsive forces between PAA and pentacene, which results in the vertical orientation of pentacene on the dielectric surface. Indeed, in comparison with its imidized counterpart polyimide (PI), PAA dielectric significantly enhances the film crystallinity, drastically increases the domain size, and decreases the interface trap density, giving rise to superior device performance with high mobility. This concept can be extended to more organic semiconducting systems, e.g., 2,6-diphenylanthracene (DPA), tetracene, copper phthalocyanine (CuPc), and copper hexadecafluorophthalocyanine (F16CuPc), demonstrating the general applicability. The results show the importance of combining surface nanogrooves with the strong polarity in orienting the molecular arrangement for high crystallinity toward efficient charge transport in organic semiconductors.

18.
Small ; 13(20)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28387442

RESUMEN

Twisted intramolecular charge-transfer (TICT) fluorogens bearing highly pretwisted geometries and readily-fine-tuned charge-transfer characters are quite promising sensor and electroluminescence (EL) materials. In this study, by using 4-aryloxy-1,8-naphthalimide derivatives as the molecular framework, it is demonstrated for the first time that a CO bond could serve as the central bond to construct new TICT D-A systems. Photophysical and quantum chemical studies confirm that rotation around central CO bonds is responsible for the formation of a stable TICT state in these compounds. More importantly, owing to the structural adjustability of the aryl moiety and the strong steric interactions between the naphthalimide and the aryl ring systems, these compounds can display readily-fine-tuned TICT characters, hence exhibiting an adjustable solvent polarity threshold for aggregation-induced emission (AIE) activity, and could be AIE-active even in less-polar toluene and nonpolar cyclohexane. Furthermore, these compounds could possess highly-pretwisted ground-state geometries, hence could show good EL performance. The findings reveal a facile but effective molecular constructive strategy for versatile, high-performance optoelectronic TICT compounds.

19.
Sensors (Basel) ; 16(10)2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27775653

RESUMEN

High-response organic field-effect transistor (OFET)-based NO2 sensors were fabricated using the synergistic effect the synergistic effect of zinc oxide/poly(methyl methacrylate) (ZnO/PMMA) hybrid dielectric and CuPc/Pentacene heterojunction. Compared with the OFET sensors without synergistic effect, the fabricated OFET sensors showed a remarkable shift of saturation current, field-effect mobility and threshold voltage when exposed to various concentrations of NO2 analyte. Moreover, after being stored in atmosphere for 30 days, the variation of saturation current increased more than 10 folds at 0.5 ppm NO2. By analyzing the electrical characteristics, and the morphologies of organic semiconductor films of the OFET-based sensors, the performance enhancement was ascribed to the synergistic effect of the dielectric and organic semiconductor. The ZnO nanoparticles on PMMA dielectric surface decreased the grain size of pentacene formed on hybrid dielectric, facilitating the diffusion of CuPc molecules into the grain boundary of pentacene and the approach towards the conducting channel of OFET. Hence, NO2 molecules could interact with CuPc and ZnO nanoparticles at the interface of dielectric and organic semiconductor. Our results provided a promising strategy for the design of high performance OFET-based NO2 sensors in future electronic nose and environment monitoring.

20.
Anal Chem ; 87(7): 3841-8, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25739838

RESUMEN

The integration of diagnostic and therapeutic functions in a single system holds great promise to enhance the theranostic efficacy and prevent the under- or overtreatment. Herein, a folate receptor-targeted and cathepsin B-activatable nanoprobe is designed for background-free cancer imaging and selective therapy. The nanoprobe is prepared by noncovalently assembling phospholipid-poly(ethylene oxide) modified folate and photosensitizer-labeled peptide on the surface of graphene oxide. After selective uptake of the nanoprobe into lysosome of cancer cells via folate receptor-mediated endocytosis, the peptide can be cleaved to release the photosensitizer in the presence of cancer-associated cathepsin B, which leads to 18-fold fluorescence enhancement for cancer discrimination and specific detection of intracellular cathepsin B. Under irradiation, the released photosensitizer induces the formation of cytotoxic singlet oxygen for triggering photosensitive lysosomal cell death. After lysosomal destruction, the lighted photosensitizer diffuses from lysosome into cytoplasm, which provides a visible method for in situ monitoring of therapeutic efficacy. The nanoprobe exhibits negligible dark toxicity and high phototoxicity with the cell mortality rate of 0.06% and 72.1%, respectively, and the latter is specific to folate receptor-positive cancer cells. Therefore, this work provides a simple but powerful protocol with great potential in precise cancer imaging, therapy, and therapeutic monitoring.


Asunto(s)
Catepsina B/metabolismo , Transportadores de Ácido Fólico/metabolismo , Nanopartículas/uso terapéutico , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Endocitosis , Células HeLa , Humanos , Células KB , Lisosomas/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Procesos Fotoquímicos/efectos de la radiación , Fármacos Fotosensibilizantes/uso terapéutico , Oxígeno Singlete/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA