Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(4): e0193923, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38445866

RESUMEN

The thermal bleaching percentage of coral holobionts shows interspecific differences under heat-stress conditions, which are closely related to the coral-associated microbiome. However, the ecological effects of community dynamics and interactions between Symbiodiniaceae and fungi on coral thermal bleaching susceptibility remain unclear. In this study, we analyzed the diversity, community structure, functions, and potential interaction of Symbiodiniaceae and fungi among 18 coral species from a high thermal bleaching risk atoll using next-generation sequencing. The results showed that heat-tolerant C3u sub-clade and Durusdinium dominated the Symbiodiniaceae community of corals and that there were no core amplicon sequence variants in the coral-associated fungal community. Fungal richness and the abundance of confirmed functional animal-plant pathogens were significantly positively correlated with the coral thermal bleaching percentage. Fungal indicators, including Didymellaceae, Chaetomiaceae, Schizophyllum, and Colletotrichum, were identified in corals. Each coral species had a complex Symbiodiniaceae-fungi interaction network (SFIN), which was driven by the dominant Symbiodiniaceae sub-clades. The SFINs of coral holobionts with low thermal bleaching susceptibility exhibited low complexity and high betweenness centrality. These results indicate that the extra heat tolerance of coral in Huangyan Island may be linked to the high abundance of heat-tolerant Symbiodiniaceae. Fungal communities have high interspecific flexibility, and the increase of fungal diversity and pathogen abundance was correlated with higher thermal bleaching susceptibility of corals. Moreover, fungal indicators were associated with the degrees of coral thermal bleaching susceptibility, including both high and intermediate levels. The topological properties of SFINs suggest that heat-tolerant coral have limited fungal parasitism and strong microbial network resilience.IMPORTANCEGlobal warming and enhanced marine heatwaves have led to a rapid decline in coral reef ecosystems worldwide. Several studies have focused on the impact of coral-associated microbiomes on thermal bleaching susceptibility in corals; however, the ecological functions and interactions between Symbiodiniaceae and fungi remain unclear. We investigated the microbiome dynamics and potential interactions of Symbiodiniaceae and fungi among 18 coral species in Huangyan Island. Our study found that the Symbiodiniaceae community of corals was mainly composed of heat-tolerant C3u sub-clade and Durusdinium. The increase in fungal diversity and pathogen abundance has close associations with higher coral thermal bleaching susceptibility. We first constructed an interaction network between Symbiodiniaceae and fungi in corals, which indicated that restricting fungal parasitism and strong interaction network resilience would promote heat acclimatization of corals. Accordingly, this study provides insights into the role of microorganisms and their interaction as drivers of interspecific differences in coral thermal bleaching.


Asunto(s)
Antozoos , Dinoflagelados , Microbiota , Animales , Antozoos/microbiología , Arrecifes de Coral , Simbiosis , Hongos/genética
2.
Mol Ecol ; 33(5): e17273, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38265168

RESUMEN

The growing threat of global warming on coral reefs underscores the urgency of identifying heat-tolerant corals and discovering their adaptation mechanisms to high temperatures. Corals growing in intertidal rock pools that vary markedly in daily temperature may have improved heat tolerance. In this study, heat stress experiments were performed on scleractinian coral Porites lutea from subtidal habitat and intertidal rock pool of Weizhou Island in the northern South China Sea. Thermotolerance differences in corals from the two habitats and their mechanisms were explored through phenotype, physiological indicators, ITS2, 16S rRNA, and RNA sequencing. At the extremely high temperature of 34°C, rock pool P. lutea had a stronger heat tolerance than those in the subtidal habitat. The strong antioxidant capacity of the coral host and its microbial partners was important in the resistance of rock pool corals to high temperatures. The host of rock pool corals at 34°C had stronger immune and apoptotic regulation, downregulated host metabolism and disease-infection-related pathways compared to the subtidal habitat. P. lutea, in this habitat, upregulated Cladocopium C15 (Symbiodiniaceae) photosynthetic efficiency and photoprotection, and significantly increased bacterial diversity and coral probiotics, including ABY1, Ruegeria, and Alteromonas. These findings indicate that rock pool corals can tolerate high temperatures through the integrated response of coral holobionts. These corals may be 'touchstones' for future warming. Our research provides new insights into the complex mechanisms by which corals resist global warming and the theoretical basis for coral reef ecosystem restoration and selection of stress-resistant coral populations.


Asunto(s)
Antozoos , Rhodobacteraceae , Animales , Antozoos/fisiología , Ecosistema , ARN Ribosómico 16S/genética , Arrecifes de Coral , Rhodobacteraceae/genética , Simbiosis
3.
Environ Sci Technol ; 58(15): 6682-6692, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38547356

RESUMEN

The atmospheric deposition of anthropogenic active nitrogen significantly influences marine primary productivity and contributes to eutrophication. The form of nitrogen deposition has been evolving annually, alongside changes in human activities. A disparity arises between observation results and simulation conclusions due to the limited field observation and research in the ocean. To address this gap, our study undertook three field cruises in the South China Sea in 2021, the largest marginal sea of China. The objective was to investigate the latest atmospheric particulate inorganic nitrogen deposition pattern and changes in nitrogen sources, employing nitrogen-stable isotopes of nitrate (δ15N-NO3-) and ammonia (δ15N-NH4+) linked to a mixing model. The findings reveal that the N-NH4+ deposition generally surpasses N-NO3- deposition, attributed to a decline in the level of NOx emission from coal combustion and an upswing in the level of NHx emission from agricultural sources. The disparity in deposition between N-NH4+ and N-NO3- intensifies from the coast to the offshore, establishing N-NH4+ as the primary contributor to oceanic nitrogen deposition, particularly in ocean background regions. Fertilizer (33 ± 21%) and livestock (20 ± 6%) emerge as the primary sources of N-NH4+. While coal combustion continues to be a significant contributor to marine atmospheric N-NO3-, its proportion has diminished to 22 (Northern Coast)-35% (background area) due to effective NOx emission controls by the countries surrounding the South China Sea, especially the Chinese Government. As coal combustion's contribution dwindles, the significance of vessel and marine biogenic emissions grows. The daytime higher atmospheric N-NO3- concentration and lower δ15N-NO3- compared with nighttime further underscore the substantial role of marine biogenic emissions.


Asunto(s)
Contaminantes Atmosféricos , Carbón Mineral , Humanos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Nitrógeno/análisis , Isótopos de Nitrógeno/análisis , China , Nitratos/análisis , Polvo
4.
Anal Biochem ; 674: 115209, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37311517

RESUMEN

Gestational diabetes mellitus (GDM) is a severe perinatal condition with serious consequences for the growth and development of the mother and baby. MicroRNA-29b (miR-29b) is essential to the pathogenesis of GDM and can be used as a molecular biomarker for diagnosis. Given the limitations of current GDM screening technologies, there is a pressing need for a sensitive detection approach to evaluate serum miR-29b in GDM patients, thus aiding in disease treatment. In this study, an electrochemical biosensor Co7Fe3-CN nanoparticles (NPs) was developed. Using a duplex-specific nuclease (DSN) signal amplification strategy with a linear range of 1-104 pM and a low detection limit of 0.79 pM, the ultra-sensitive detection and quantification of miR-29b were accomplished. The dependability and applicability of the developed biosensor were validated by the standard method of qRT-PCR, and the content of serum miR-29b in GDM patients was shown to be significantly lower than that in the control group (P = 0.03). Specifically, miR-29b concentrations could be detected from 2.0 to 7.5 and 2.4 to 7.3 pM using qRT-PCR and the biosensor, respectively. These similar results indicated that a biosensor based on miR-29b detection has the potential to be used in the point-of-care testing of GDM patients in clinical practice.


Asunto(s)
Técnicas Biosensibles , Diabetes Gestacional , MicroARNs , Nanopartículas , Embarazo , Femenino , Humanos , Diabetes Gestacional/diagnóstico , MicroARNs/análisis , Técnicas Biosensibles/métodos , Diagnóstico Precoz
5.
Analyst ; 148(16): 3851-3859, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37431998

RESUMEN

High-performance electrochemical sensors have attracted intensive interest in real-time environmental safety monitoring, the Internet of Things, and telemedicine applications. A key limitation to field measurement of pollutant distribution is the lack of a highly sensitive and selective monitoring platform, thus severely hindering the decentralized monitoring of pollutant exposure risk. Hence, a sensor was developed in this study by using a molecularly imprinted polymer (MIP). Specifically, Cu2O@C@NiCo2O4, with a large surface area and high conductivity, was coated onto the Au electrode surface and further modified by the anodic electro-polymerization of o-phenylenediamine (o-PD) using perfluorooctanoic acid (PFOA) as the template, followed by template removal for activation, thus obtaining the Au/Cu2O@C@NiCo2O4/MIP electrode. Particularly, an effective monitoring platform derived from this sensor was designed to achieve cost-effective pollution detection. Au/Cu2O@C@NiCo2O4/MIP was employed in a disposable microchip sensor for the sensitive detection of PFOA, exhibiting an ultra-low limit of detection (LOD) of 19.46 ng L-1 in a linear range of 207-4140 ng L-1 along with satisfactory sensitivity, selectivity, and reproducibility, which reveal its great potential in the low-cost and efficient field detection of PFOA in coastal seawater. These promising results indicate a bright future for such microchip-sensor-supported PFOA tele-sensing platforms in aiding environmental safety and blue earth protection. We will persist in refining this method to enhance the sensitivity of the sensor for PFOA detection in polluted coastal areas.

6.
Environ Sci Technol ; 57(39): 14602-14610, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37713478

RESUMEN

Deep-sea sediments (>1000 m) are often considered to be the ultimate sink for black carbon (BC), and the long-term buried BC in these sediments is believed to potentially provide a negative feedback effect on climate warming. The burial flux of BC in marine sediments is predominantly estimated based on soot BC (SBC) in most studies, frequently ignoring the contribution of char BC (CBC). While this methodology may result in an underestimation of the BC burial flux, the precise extent of this underestimation is yet to be determined. This study used the benzene poly(carboxylic acid) (BPCA) method and chemothermal oxidation (CTO) method to analyze CBC and SBC in four deep-sea sediment cores from the Zhongnan seamount in the South China Sea, respectively. The CBC content increased from 0.026 ± 0.010% at the seamount upper part (1432 m) to 0.039 ± 0.012% at the seamount foot (4278 m), constituting approximately 25 to 42% of the SBC content. The content disparity between CBC and SBC diminishes as depth increases. In deep-sea sediments, biogeochemical factors influence the variation of CBC molecules with depth. In the seamount middle-upper part (1432 and 2465 m), highly condensed CBC gradually accumulated along the core downward profile. In the sediment core profile of the seamount middle-lower part (3497 m), benzenetricarboxylic acid and benzenetetracarboxylic acid content decreased while the BC condensation degree rose, i.e., less condensed CBC was preferentially consumed. Afterward, CBC molecules reached a relatively stable state at the seamount foot. This study reveals that CBC possesses the capacity for long-term carbon sequestration in deep-sea sediments, and its content is not negligible.


Asunto(s)
Sedimentos Geológicos , Hollín , Sedimentos Geológicos/química , Hollín/análisis , Ácidos Carboxílicos , Carbono , China , Monitoreo del Ambiente/métodos
7.
Environ Sci Technol ; 57(49): 20750-20760, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37909879

RESUMEN

The environmental implications of polycyclic aromatic hydrocarbons (PAHs) caused by the vigorous development of offshore oil exploitation and shipping on the marine ecosystem are unclear. In this study, the PAH concentrations were systematically characterized in multiple environmental media (i.e., atmosphere, rainwater, seawater, and deep-sea sediments) in the western South China Sea (WSCS) for the first time to determine whether PAH pollution increased. The average ∑15PAHs (total concentration of 15 US EPA priority controlled PAHs excluding naphthalene) in the water of WSCS has increased and is higher than the majority of the oceans worldwide due to the synergistic influence of offshore oil extraction, shipping, and river input. The systematic model comparison confirms that the Ksoot-air model can more accurately reflect the gas-particle partitioning of PAHs in the atmosphere of the WSCS. We also found that the vertical migration of the elevating PAHs is accelerated by particulate matter, driving the migration of atmospheric PAHs to the ocean through dry and wet deposition, with 16% being contributed by the particle phase. The particulate matter sinking alters the PAH distribution in the water column and generates variation in source apportionment, while the contribution of PAHs loaded on them (>20%) to the total PAH reserves cannot be ignored as before. Hence, the ecological threat of PAHs increases by the oil drilling and shipping industry, and the driving force of particulate matter deserves continuous attention.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , Océanos y Mares , Material Particulado/análisis , China , Agua , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos
8.
Environ Res ; 233: 116495, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37364627

RESUMEN

Per-and polyfluoroalkyl substances (PFASs) have received great attention due to their persistence, bioaccumulation and toxicity. Various activated carbons (ACs) exhibit wide variability in adsorptive performance towards PFASs. In order to gain a systematic understanding of adsorptive removal of legacy and emerging PFASs by ACs, the adsorption of ten PFASs on various ACs was comprehensively investigated. Results showed that granular activated carbon-1 (GAC-1) and powdered activated carbon-1 (PAC-1) removed more than 90% of all target PFASs. Particle size, surface charge, and micropores quantity of ACs were closely related to their performance for PFASs removal. Electrostatic interaction, hydrophobic interaction, surface complexation and hydrogen bonding were the adsorption mechanisms, with hydrophobic interaction being the predominant adsorptive force. Physical and chemical adsorption were both involved in PFAS adsorption. The removal rates of PFASs by GAC-1 decreased from 93%-100% to 15%-66% in the presence of 5 mg/L fulvic acid (FA). GAC was able to remove more PFASs under acidic medium, whereas PAC removed hydrophobic PFASs better under the neutral medium. The removal rates of PFASs by GAC-3 increased significantly from 0%-21% to 52%-97% after being impregnated with benzalkonium chlorides (BACs), demonstrating the superiority of this modification method. Overall, this study provided theoretical support for removing PFASs from water phase with ACs.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Carbón Orgánico/química , Adsorción , Contaminantes Químicos del Agua/análisis , Fluorocarburos/análisis , Agua
9.
Proc Natl Acad Sci U S A ; 117(13): 7038-7043, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32179672

RESUMEN

Paleoclimate research has built a framework for Earth's climate changes over the past 65 million years or even longer. However, our knowledge of weather-timescale extreme events (WEEs, also named paleoweather), which usually occur over several days or hours, under different climate regimes is almost blank because current paleoclimatic records rarely provide information with temporal resolution shorter than monthly scale. Here we show that giant clam shells (Tridacna spp.) from the tropical western Pacific have clear daily growth bands, and several 2-y-long (from January 29, 2012 to December 9, 2013) daily to hourly resolution biological and geochemical records, including daily growth rate, hourly elements/Ca ratios, and fluorescence intensity, were obtained. We found that the pulsed changes of these ultra-high-resolution proxy records clearly matched with the typical instrumental WEEs, for example, tropical cyclones during the summer-autumn and cold surges during the winter. When a tropical cyclone passes through or approaches the sampling site, the growth rate of Tridacna shell decreases abruptly due to the bad weather. Meanwhile, enhanced vertical mixing brings nutrient-enriched subsurface water to the surface, resulting in a high Fe/Ca ratio and strong fluorescence intensity (induced by phytoplankton bloom) in the shell. Our results demonstrate that Tridacna shell has the potential to be used as an ultra-high-resolution archive for paleoweather reconstructions. The fossil shells living in different geological times can be built as a Geological Weather Station network to lengthen the modern instrumental data and investigate the WEEs under various climate conditions.


Asunto(s)
Bivalvos/química , Bivalvos/crecimiento & desarrollo , Clima Extremo , Paleontología/métodos , Animales
10.
Mol Ecol ; 31(20): 5339-5355, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35976256

RESUMEN

As high temperature stress due to climate change threatens tropical corals, cooler areas at relatively high latitudes may be potential refuges. Tolerance to low temperatures is critical in determining whether corals can successfully migrate to higher latitudes. However, the physiological and molecular adaptations that protect corals from low temperature stress are unclear. In this study, scleractinian Porites lutea samples from the tropical Xisha Islands (XS) and subtropical Daya Bay (DY) in the South China Sea were subjected to a reduction in ambient temperature from 26 to 12°C. Differences in physiological changes and gene expression were analysed. P. lutea from both XS and DY exhibited physiological bleaching under low temperature stress, and the Symbiodiniaceae density, Fv/Fm, and chlorophyll-α content were significantly reduced. Symbiosome antioxidative stress and metabolic enzyme activity first increased and then decreased. RNA-seq analysis showed that the host responded to low temperature stress by activating immune, apoptotic, and autophagic pathways and reducing metabolic levels. Nevertheless, Symbiodiniaceae lacked the physiological regulatory capacity to adapt to low temperatures. The lower cold tolerance of XS tropical P. lutea may attribute to lower oxidative stress resistance, lower photosynthetic capacity, worse energy supply, and higher susceptibility to bacterial and viral infections and diseases in XS corals. The difference in cold tolerance may result from genetic differences between the geographic populations and is possibly detrimental to the migration of tropical coral to relatively high latitude refuges. This study provides a theoretical basis for anthropogenically assisted coral migration as a response to global change.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Antozoos/fisiología , Clorofila , Frío , Arrecifes de Coral
11.
Anal Bioanal Chem ; 414(26): 7635-7646, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36059041

RESUMEN

Coral bleaching caused by climate change has resulted in large-scale coral reef decline worldwide. However, the knowledge of physiological response mechanisms of scleractinian corals under high-temperature stress is still challenging. Here, untargeted mass spectrometry-based metabolomics combining with Global Natural Product Social Molecular Networking (GNPS) was utilized to investigate the physiological response of the coral species Pavona decussata under thermal stress. A wide variety of metabolites (including lipids, fatty acids, amino acids, peptides, osmolytes) were identified as the potential biomarkers and subjected to metabolic pathway enrichment analysis. We discovered that, in the thermal-stressed P. decussata coral holobiont, (1) numerous metabolites in classes of lipids and amino acids significantly decreased, indicating an enhanced lipid hydrolysis and aminolysis that contributed to up-regulation in gluconeogenesis to meet energy demand for basic survival; (2) pantothenate and panthenol, two essential intermediates in tricarboxylic acid (TCA) cycle, were up-regulated, implying enhanced efficiency in energy production; (3) small peptides (e.g., Glu-Leu and Glu-Glu-Glu-Glu) and lyso-platelet-activating factor (lysoPAF) possibly implicated a strengthened coral immune response; (4) the down-regulation of betaine and trimethylamine N-oxide (TMAO), known as osmolyte compounds for maintaining holobiont homeostasis, might be the result of disruption of coral holobiont.


Asunto(s)
Antozoos , Productos Biológicos , Animales , Blanqueamiento de los Corales , Betaína/metabolismo , Espectrometría de Masas , Biomarcadores/metabolismo , Aminoácidos/metabolismo , Ácidos Tricarboxílicos , Lípidos
12.
Environ Res ; 214(Pt 3): 114060, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35981611

RESUMEN

Recent studies have indicated that coral mucus plays an important role in the bioaccumulation of a few organic pollutants by corals, but no relevant studies have been conducted on organochlorine pesticides (OCPs). Previous studies have also indicated that OCPs widely occur in a few coral reef ecosystems and have a negative effect on coral health. Therefore, this study focused on the occurrence and bioaccumulation of a few OCPs, such as dichlorodiphenyltrichloroethanes (DDTs), hexachlorobenzene (HCB) and p,p'-methoxychlor (MXC), in the coral tissues and mucus as well as in plankton and seawater from a coastal reef ecosystem (Weizhou Island) in the South China Sea. The results indicated that DDTs were the predominant OCPs in seawater and marine biota. Higher concentrations of OCPs in plankton may contribute to the enrichment of OCPs by corals. The significantly higher total OCP concentration (∑8OCPs) found in coral mucus than in coral tissues suggested that coral mucus played an essential role in resisting enrichment of OCPs by coral tissues. This study explored the different functions of coral tissues and mucus in OCP enrichment and biodegradation for the first time, highlighting the need for OCP toxicity experiments from both tissue and mucus perspectives.


Asunto(s)
Antozoos , Hidrocarburos Clorados , Plaguicidas , Contaminantes Químicos del Agua , Animales , Antozoos/metabolismo , China , Arrecifes de Coral , Ecosistema , Monitoreo del Ambiente , Hidrocarburos Clorados/análisis , Plaguicidas/análisis , Plancton/metabolismo , Contaminantes Químicos del Agua/análisis
13.
Antonie Van Leeuwenhoek ; 115(7): 933-941, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35639297

RESUMEN

Thermal stress is considered one of the main causes of mass scleractinian coral degradation; however, it is still unknown how corals can adapt to future global warming. In this study, 11 strains of coral-associated Flavobacteria were shown to produce zeaxanthin, a carotenoid antioxidant, which may help coral holobionts to alleviate thermal stress. In addition, a novel zeaxanthin-producing Flavobacterium, designated R38T, was identified using polyphasic taxonomy. Although strain R38T shared a maximum 16S rRNA gene sequence similarity of 93% with Mesoflavibacter aestuarii KYW614T, phylogenetic analyses based on whole genome and 16S rRNA gene sequences revealed that strain R38T forms a distinct branch in a robust cluster composed of strain R38T and Leptobacterium flavescens KCTC 22160T under the family Flavobacteriaceae. Strain R38T exhibited average nucleotide identities of 70.2% and 72.5% for M. aestuarii KYW614T and L. flavescens KCTC 22160T, respectively. The only detected respiratory quinone was menaquinone 6 (MK-6). The genomic DNA G + C content was 33.2 mol%. The major polar lipids were phosphatidylmethylethanolamine, phosphatidylethanolamine, one unidentified ninhydrin phospholipid, three unidentified ninhydrin-positive lipids, and three unidentified lipids. The major cellular fatty acids were iso - C15: 0, iso - C15: 0 ω6c, C16:2 DMA, and C13:1 ω3c. The distinct biochemical, chemotaxonomic, phylogenetic, and phylogenomic differences from validly published taxa suggest that strain R38T represents a new species of a new genus, for which Prasinibacter corallicola gen. nov., sp. nov. is proposed. The type strain R38T (= MCCC 1K03889T = KCTC 72444T).


Asunto(s)
Antozoos , Animales , Antozoos/microbiología , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/química , Ninhidrina , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Vitamina K 2/química , Zeaxantinas
14.
J Sci Food Agric ; 102(8): 3467-3474, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34841541

RESUMEN

BACKGROUND: ß-Glucosidases (3.2.1.21) play essential roles in the removal of nonreducing terminal glucosyl residues from saccharides and glycosides. However, the full potential and different applications of recombinant high-yield microbial ß-glucosidase-producing systems remain to be tackled. RESULTS: A ß-glucosidase gene designated as Mg132 was isolated from a coral microorganism by high-throughput sequencing and functional screening. The deduced amino acid sequences of Mg132 showed a highest identity of 97% with ß-glucosidase predicted in the GenBank database. This gene was cloned and overexpressed in Escherichia coli BL21 (DE3) for the first time. The optimal pH and temperature of purified recombinant Mg132 were 8.0 and 50 °C respectively. It exhibited a high level of stability at high concentration of glucose and ethanol, and glucose concentrations below 300 mmol L-1 distinctly stimulated p-nitrophenyl-ß-d-glucopyranoside hydrolysis, reaching 200% at 15% ethanol. The Km and Vmax values were 0.293 mmol L-1 and 320 µmol min-1  mg-1 respectively while using p-nitrophenyl-ß-d-glucopyranoside as a substrate. Wine treated with Mg132 had an obvious positive catalytic specificity for glycosides, which give a pleasant flavor of temperate fruity and floral aromas. The total concentration of fermentative volatiles was 201.42 ± 10.22 µg L-1 following Mg132 treatment and 99.21 ± 7.72 µg L-1 in control samples. CONCLUSION: Good tolerance of winemaking and aroma fermentative properties suggest that Mg132 has potential application in aroma enhancement in wine and warrants further study. © 2021 Society of Chemical Industry.


Asunto(s)
Antozoos , Vino , Animales , Antozoos/metabolismo , Estabilidad de Enzimas , Etanol , Glucosa , Glicósidos/metabolismo , Concentración de Iones de Hidrógeno , Odorantes/análisis , Especificidad por Sustrato , Vino/análisis , beta-Glucosidasa/metabolismo
15.
Cancer Sci ; 112(9): 3699-3710, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34115910

RESUMEN

Pyrosequencing (PSQ) represents the golden standard for MGMT promoter status determination. Binary interpretation of results based on the threshold from the average of several CpGs tested would neglect the existence of the "gray zone". How to define the gray zone and reclassify patients in this subgroup remains to be elucidated. A consecutive cohort of 312 primary glioblastoma patients were enrolled. CpGs 74-81 in the promoter region of MGMT were tested by PSQ and the protein expression was assessed by immunohistochemistry (IHC). Receiver operating characteristic curves were constructed to calculate the area under the curves (AUC). Kaplan-Meier plots were used to estimate the survival rate of patients compared by the log-rank test. The optimal threshold of each individual CpG differed from 5% to 11%. Patients could be separated into the hypomethylated subgroup (all CpGs tested below the corresponding optimal thresholds, n = 126, 40.4%), hypermethylated subgroup (all CpGs tested above the corresponding optimal thresholds, n = 108, 34.6%), and the gray zone subgroup (remaining patients, n = 78, 25.0%). Patients in the gray zone harbored an intermediate prognosis. The IHC score instead of the average methylation levels could successfully predict the prognosis for the gray zone (AUC for overall survival, 0.653 and 0.519, respectively). Combining PSQ and IHC significantly improved the efficiency of survival prediction (AUC: 0.662, 0.648, and 0.720 for PSQ, IHC, and combined, respectively). Immunohistochemistry is a robust method to predict prognosis for patients in the gray zone defined by PSQ. Combining PSQ and IHC could significantly improve the predictive ability for clinical outcomes.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Adolescente , Adulto , Anciano , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Islas de CpG/genética , Metilación de ADN , Femenino , Estudios de Seguimiento , Glioblastoma/mortalidad , Glioblastoma/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunohistoquímica/métodos , Masculino , Persona de Mediana Edad , Pronóstico , Supervivencia sin Progresión , Estudios Retrospectivos , Tasa de Supervivencia , Adulto Joven
16.
Environ Microbiol ; 23(8): 4389-4404, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34110067

RESUMEN

Environmental conditions between the outer reef slope (ORS) and lagoon in tropical atolls are significantly different, but the variations of juvenile coral-microbiomes in the two environments and their relationship with coral thermal acclimatization are poorly understood. We explored this issue based on local water conditions and the microbiome of juvenile corals in the ORS and lagoon in the central South China Sea. Coral-symbiotic Symbiodiniaceae showed significant differences among coral species; Pocillopora verrucosa and Pachyseris rugosa in the ORS, and Acropora formosa in the lagoon were dominated by Durusdinium, but other corals were dominated by Cladocopium. Although A. formosa in the ORS were dominated by Cladocopium (C3u), they were dominated by Durusdinium (D1/D1a) and Cladocopium (C50) in the lagoon. Other coral species were both dominated by Cladocopium in the lagoon and ORS. The relative abundance of bacteria in the Deinococcus-Thermus was generally higher in the lagoon corals than in the ORS corals. Our study indicates that P. verrucosa, P. rugosa and Porites lutea may have high thermal tolerance based on the relatively high abundance of heat-tolerant Durusdinium and Thermus scotoductus. Likewise, A. formosa in the lagoon may acclimatize to the thermal environment based on a high relative abundance of heat-tolerant Durusdinium.


Asunto(s)
Antozoos , Dinoflagelados , Microbiota , Aclimatación , Animales , Arrecifes de Coral
17.
Environ Sci Technol ; 55(14): 9916-9925, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34236184

RESUMEN

Microplastic particles can be deposited to sediments and subsequently ingested by benthic organisms. It is unknown to what extent ingestion of microplastic is taxon-specific or whether taxa can be selective toward certain types of microplastics. Here, we used state-of-the-art automated micro-Fourier-transform infrared (µFTIR) imaging and attenuated total reflectance FTIR spectroscopy to determine small-size (20-500 µm) and large-size (500-5000 µm) microplastic particles in sediments and a range of benthic invertebrate species sampled simultaneously from the Dommel River in the Netherlands. Microplastic number concentrations differed across taxa at the same locations, demonstrating taxon-specific uptake, whereas size distributions were the same across sediments and taxa. At the site with the highest concentration, microplastic occupied up to 4.0% of the gut volume of Asellidae. Particle shape distributions were often not statistically different between sediments and taxa, except for Astacidea at one of the locations where the proportion of particles with a length to width ratio >3 (i.e., fibers) was twice as high in sediments than in Astacidea. Acrylates/polyurethane/varnish was predominately found in sediments, while soft and rubbery polymers ethylene propylene diene monomer and polyethylene-chlorinated were the dominant polymers found in invertebrates. Microplastic polymer composition and thus polymer density differed significantly between invertebrates and their host sediment. Trophic transfer at the base of the food web appears to have a filter function with respect to microplastic particle types and shapes. Together with the very high ingestion rates, this has clear implications for ecological and human health risks, where uptake concerns edible species (e.g., Astacidea).


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Agua Dulce , Sedimentos Geológicos , Humanos , Invertebrados , Plásticos , Contaminantes Químicos del Agua/análisis
18.
Environ Res ; 201: 111485, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34139227

RESUMEN

Legacy per- and polyfluoroalkyl acids (PFASs) have received global concern over the scientific and public community since this century. However, the information on alternative PFASs pollution in the marine environment, especially in the subtropical marine environment is extremely limited. This study investigated the occurrence, partitioning, potential sources, and ecological risks of PFASs, including perfluoroalkane sulfonic acids (PFSAs), perfluoroalkyl carboxylic acids (PFCAs), and alternative PFASs, in surface water and sediments from the subtropical Beibu Gulf, South China. Concentrations of total PFASs (∑PFASs) were in the range of 0.98-2.64 ng/L in water and 0.19-0.66 ng/g (dry weight, dw) in sediment, respectively. Perfluorooctanoic acid (PFOA) was the most abundant PFAS in water, while PFASs in sediment were dominated by perfluorooctanesulfonic acid (PFOS) and PFOA. Among investigated environmental parameters (total organic carbon (TOC), grain size, water pH, sediment pH, and salinity), TOC and salinity were the dominant factors influencing the sediment-water distribution coefficient (Kd) of PFOA, perfluorodecanoic acid (PFDA), and perfluorononanoic acid (PFNA). Log Kd and log soil organic carbon-water distribution coefficient (Koc) both increase with increasing carbon chain length of PFASs. Significantly positive correlations between PFOS and perfluorohexanoic acid (PFHxA) (p < 0.05), PFOA and perfluoro-1-butane-sulfonamide (FBSA) were observed, suggesting that these PFASs might have similar sources and transport routes. Preliminary environmental risk assessment showed that PFOA and PFOS would not pose risks to the marine aquatic environment. This is the first comprehensive survey of legacy and alternative PFASs in a subtropical area of the Beibu Gulf, which provides significant data and scientific basis to better understand the fate of PFASs and pollution control management.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Alcanesulfónicos/análisis , Carbono , China , Monitoreo del Ambiente , Fluorocarburos/análisis , Suelo , Agua , Contaminantes Químicos del Agua/análisis
19.
Environ Res ; 195: 110782, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33503412

RESUMEN

Some scleractinian corals exhibit high thermal adaptability to climate changes, although the mechanism of their adaptation is unclear. This study investigated the adaptability of scleractinian coral Pocillopora damicornis to thermally variable reef environments by applying a nanopore-based RNA sequencing method to characterize different transcription responses that promote heat tolerance of P. damicornis. We identified 1414 novel genes and optimized 6256 mis-annotated loci. Based on full-length transcriptome data, we identified complex alternative polyadenylation and alternative splicing events, which can improve our understanding of the genome annotation and gene structures of P. damicornis. Furthermore, we constructed differentially expressed lncRNA-mRNA co-expression networks, which may play a crucial role in the P. damicornis thermal adaptive response. KEGG function enrichment analysis revealed that P. damicornis from the high-temperature pool had a lower metabolic rate than that from the low-temperature pool. We hypothesize that metabolic readjustment, in the form of a lower metabolic rate, positively correlated with increased heat tolerance in P. damicornis in thermally variable reef environments. Our study provides novel insights into lncRNAs that promote thermally tolerance of scleractinian corals in the thermally variable reef environment, suggesting potential mechanisms for their adaptation to global warming in the future.


Asunto(s)
Antozoos , Nanoporos , Termotolerancia , Aclimatación/genética , Animales , Antozoos/genética , Calentamiento Global , Termotolerancia/genética
20.
J Water Health ; 19(5): 796-807, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34665772

RESUMEN

Sulfate radical (•SO4-)-based advanced oxidation processes are widely used for wastewater treatment. This study explored the potential use of UV/persulfate (UV/PS) system for the degradation of 17ß-estradiol (E2). The pH of the reaction system can affect the degradation rate of E2 by UV/PS and the optimum pH was 7.0; Br- and Cl- in water can promote the degradation rate, HCO3- has an inhibitory effect on the reaction, SO42- and cations (Na+, Mg2+, K+) have no effect on the degradation rate. The degradation of E2 by UV/PS was a mineralization process, with the mineralization rate reaching 90.97% at 8 h. E2 in the UV/PS system was mainly degraded by hydroxylation, deoxygenation, and hydrogenation. E2 reaction sites were mainly located on benzene rings, mainly carbonylation on quinary rings, and bond breakage between C10 and C5 resulted in the removal of benzene rings and carboxyl at C2 and C3 sites. In the presence of halogen ions, halogenated disinfection by-products were not formed in the degradation process of E2 by UV/PS. E2 in the UV/PS system could inhibit the formation of bromate. The results of this study suggest that UV/PS is a safe and reliable method to degrade E2.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Estradiol , Oxidación-Reducción , Sulfatos , Rayos Ultravioleta , Agua , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA