Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Phytother Res ; 37(11): 5378-5393, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37589332

RESUMEN

Epinodosin has shown antibacterial and antitumor biological characteristics in the documents. We found that Epinodosin has an effective inhibitory effect on esophageal squamous cell carcinoma (ESCC). However, the potential roles and mechanisms of Epinodosin in ESCC remain unclear. We performed many experiments to clarify the effect and mechanism of Epinodosin on ESCC. In this study, cell viability, invasion, migration, and apoptosis were determined by 3-(4,5-dimethyl-2-thiazolyl)-2,-diphenytetrazoliumromide (MTT), Transwell, and flow cytometry. The differentially expressed miRNAs were screened through RNA transcriptome sequencing. The expression levels of miRNA-143-3p and some proteins were measured by real-time polymerase chain reaction (PCR) and Western blot. The anticancer effects of Epinodosin in vivo were determined by a nude mouse model. Epinodosin suppressed cell proliferation/invasion/migration and induced ESCC cell apoptosis. Epinodosin remarkably affected the protein expression of mitogen-activated protein kinase (MAPK) signaling pathway. The animal experiments demonstrated that Epinodosin could attenuate the growth of ESCC tumors in nude mice. The expression of p53, Bim, and Bax was upregulated, while that of Bcl-2 was downregulated in tumor tissues. In conclusion, Epinodosin suppresses cell viability/invasion/migration, while induces ESCC cell apoptosis by mediating miRNA-143-3p and Bcl-2, and can markedly attenuate the growth of ESCC tumors in nude mice.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , MicroARNs , Animales , Ratones , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas/tratamiento farmacológico , Ratones Desnudos , Neoplasias Esofágicas/tratamiento farmacológico , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica
2.
BMC Ophthalmol ; 21(1): 451, 2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-34961513

RESUMEN

BACKGROUND: Diabetic retinopathy (DR) is a common and potentially devastating microvascular complication of diabetes mellitus (DM). The main features of DR are inflammation and oxidative damage. Gliquidone (GLI) is confirmed to be a hypoglycemic drug by oral administration. The current study is aimed to investigate the role and mechanism of GLI on the pathogenesis of DR. METHODS: High glucose (HG)-induced human retinal endothelial cells (HRECs) were used to explore the anti-inflammatory and anti-oxidant effects of GLI on DR in vitro. Streptozotocin (STZ)-induced DM rats were used to investigate the effects of GLI on retinal structures, inflammation, and oxidative stress. The levels of SIRT1/Notch1 pathway-related proteins were determined by western blotting. RESULTS: GLI treatment promoted the viability and inhibited the apoptosis of HG-induced HRECs. Meanwhile, the levels of interleukin (IL)-6, IL-1ß, tumour necrosis factor alpha and reactive oxygen species were suppressed, while both catalase and superoxide dismutase were elevated after GLI treatment in HG-induced HRECs. Furthermore, we found that Silencing information regulator 2 related enzyme 1 (SIRT1) silencing reversed the inhibiting effects of GLI on the levels of protein Notch1 and effector genes Hes1 and Hey2. Similar anti-inflammatory and anti-oxidant effects of GLI in STZ-induced DM rats were observed. Additionally, GLI administration also repressed vascular hyperpermeability in vivo. CONCLUSION: GLI may be an effective agent to improve DR through repression of inflammation and oxidative stress via SIRT1/Notch1 pathway.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Animales , Retinopatía Diabética/tratamiento farmacológico , Células Endoteliales/metabolismo , Estrés Oxidativo , Ratas , Receptor Notch1 , Retina/metabolismo , Sirtuina 1/metabolismo , Compuestos de Sulfonilurea
3.
Artículo en Inglés | MEDLINE | ID: mdl-38934120

RESUMEN

Background: Hepatocellular carcinoma (HCC) is a highly aggressive cancer. This study aims to elucidate the role of Glyoxylate reductase/hydroxypyruvate reductase (GRHPR) in HCC proliferation and metastasis, along with its molecular mechanism, and to identify miRNAs targeting GRHPR. Materials and Methods: Expression levels of GRHPR and miR-138-5p were assessed using real-time fluorescent quantitative polymerase chain reaction and Western blot techniques. Bioinformatic analysis was employed to identify miRNAs targeting GRHPR, and the results were confirmed via dual-luciferase reporter assays. HCC cell lines overexpressing GRHPR were established to investigate its roles in cell proliferation, migration, and invasion. The biological function of miR-138-5p targeting GRHPR in HCC cells was also evaluated. Furthermore, a xenograft mouse model was utilized to examine the in vivo functions of GRHPR. Results: GRHPR expression was downregulated in HCC, whereas miR-138-5p was upregulated. Overexpression of GRHPR suppressed HCC cell proliferation, migration, and invasion. Conversely, inhibition of GRHPR by miR-138-5p promoted HCC cell proliferation and invasive properties. MiR-138-5p was found to regulate Phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) phosphorylation levels by inhibiting GRHPR expression. Conclusion: This study highlights GRHPR's role as a tumor suppressor in HCC, with its function being regulated by miR-138-5p.

4.
Discov Oncol ; 15(1): 8, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216781

RESUMEN

Glutamate dehydrogenase 1 (GLUD1) is an important enzyme in glutamine metabolism. Previously, we found GLUD1 was down-regulated in tumor tissues of hepatocellular carcinoma (HCC) patients by proteomics study. To explore its role in the progression of HCC, the expressional level of GLUD1 was firstly examined and presented as that both the protein and mRNA levels were down-regulated in tumor tissues compared to the normal liver tissues. GLUD1 overexpression significantly inhibited HCC cells proliferation, migration, invasion and tumor growth both in vitro and in vivo, while GLUD1 knocking-down promoted HCC progression. Metabolomics study of GLUD1 overexpressing and control HCC cells showed that 129 differentially expressed metabolites were identified, which mainly included amino acids, bases, and phospholipids. Moreover, metabolites in mitochondrial oxidative phosphorylation system (OXPHOS) were differentially expressed in GLUD1 overexpressing cells. Mechanistic studies showed that GLUD1 overexpression enhanced mitochondrial respiration activity and reactive oxygen species (ROS) production. Excessive ROS lead to mitochondrial apoptosis that was characterized by increased expression levels of p53, Cytochrome C, Bax, Caspase 3 and decreased expression level of Bcl-2. Furthermore, we found that the p38/JNK MAPK pathway was activated in GLUD1 overexpressing cells. N-acetylcysteine (NAC) treatment eliminated cellular ROS and blocked p38/JNK MAPK pathway activation, as well as cell apoptosis induced by GLUD1 overexpression. Taken together, our findings suggest that GLUD1 inhibits HCC progression through regulating cellular metabolism and oxidative stress state, and provide that ROS generation and p38/JNK MAPK pathway activation as promising methods for HCC treatment.

5.
Artículo en Inglés | MEDLINE | ID: mdl-36425260

RESUMEN

Objective: The purpose of this study was to explore the potential mechanisms of the lipid-regulating effects and the effect on modulating the gut microbiota of hawthorn leaf flavonoids (HLF) in the high-fat diet-induced hyperlipidemic rats. Methods: The hypolipidemic effect of HLF was investigated in the high-fat diet-induced hyperlipidemic rats. The action targets of HLF in the treatment of hyperlipidemia were predicted by network pharmacology and KEGG enrichment bubble diagram, which were verified by the test of western blotting. Meanwhile, we used 16S rRNA sequencing to evaluate the effects of HLF on the microbes. Results: The results of animal experiments showed that HLF could reduce the body weight and regulate the levels of serum lipid in high-fat diet (HFD) rats. Meanwhile, for the related targets of cholesterol metabolism, HLF could significantly upregulate the expression of LDLR, NR1H3, and ABCG5/ABCG8; reduce the expression of PCSK9; and increase the level of CYP7A1 in the intestinal tissue, whereas cholesterol biosynthetic protein expressions including HMGCR and SCAP were lowered by HLF. In addition, HLF increased the activities of plasma SOD, CAT, and GSH-Px and decreased the levels of Casp 1, NLRP3, IL-1ß, IL-18, and TNF-α, improving the degree of hepatocyte steatosis and inflammatory infiltration of rats. Notably, HLF significantly regulated the relative abundance of major bacteria such as g_Lactobacillus, g_Anaerostipes, g_[Eubacterium]_hallii_group, g_Fusicatenibacter, g_Akkermansia, and g_Collinsella. Synchronously, we found that HLF could regulate the disorder of plasma HEPC and TFR levels caused by HFD. Conclusion: This study demonstrates that HLF can regulate metabolic hyperlipidemia syndromes and modulate the relative abundance of major bacteria, which illustrated that it might be associated with the modulation of gut microbiota composition and metabolites.

6.
J Zhejiang Univ Sci B ; 23(9): 760-769, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36111572

RESUMEN

Lung cancer is one of the most prevalent and malignant cancers, among which lung adenocarcinoma (LUAD) accounts for the majority and remains a major cause of cancer-related mortality worldwide (Cui et al., 2019). Despite the growing intensity of research on the pathobiology and progression of lung cancer and the fact that many genes have been identified as potential drivers and targets for therapy (Luo et al., 2019; Zhang et al., 2019), the treatment and prognosis of lung cancer patients have hardly improved. Therefore, this study aimed to investigate the precise mechanism of lung cancer development and explore efficient diagnostic and therapeutic methods for clinical treatment.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Transaminasas , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mitocondrias/metabolismo , FN-kappa B/metabolismo
7.
Oncogene ; 40(29): 4820-4831, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34155346

RESUMEN

Hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer and one of the leading causes of cancer-related death worldwide. To gain more insights into the transcriptomic landscape and molecular mechanism of HCC, we performed TMT-labelled tandem mass spectrometry (n = 4) and whole-transcriptome sequencing (n = 3) based on HCC tumour (T) and adjacent normal (N) tissues from seven HCC patients. To comprehensively evaluate the gene-regulatory circuits in HCC, differential expression and enrichment analyses were performed on the differentially expressed proteins (DEPs), genes (DEGs), miRNAs (555), lncRNAs (29) and circRNAs (895). A total of 977 proteins and 243 genes were found to be differentially expressed in HCC tumours compared with adjacent normal tissues. HCC data from The Cancer Genome Atlas were used to validate the results. Combined with the results above, 56 DEP-DEGs with common changes in relative quantity were identified. Functional pathway analysis showed that the DEP-DEGs were mainly enriched in the spliceosome and various metabolic processes. Bioinformatics analysis showed that hsa-miR-1266-5p, hsa-miR-128-1-5p, hsa-miR-139-5p, hsa-miR-34b-3p and hsa-miR-570-3p were involved in the regulation of the hub genes mentioned above. The crucial coexpression (lncRNA-mRNA, circRNA-mRNA) and competing endogenous RNA interaction axes showed the possible functions of the lncRNAs and circRNAs. We explored potential cancer biomarkers by combining proteomic and transcriptomic studies. Our study provides a valuable resource for understanding regulatory mechanisms at the RNA level and may ultimately further assist in the development of diagnostic and/or therapeutic targets for HCC.


Asunto(s)
Carcinoma Hepatocelular , ARN Circular , ARN Largo no Codificante , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA