Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Phytoremediation ; 21(5): 479-486, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30560684

RESUMEN

Large amounts of wastewater are generated from stone processing, which are toxic and cause serious environmental and health risks. To quantify the content of stone processing wastewater and estimate its effects on plant growth, we collected water samples from sewage outfall of four stone processing factories and nearby water bodies. The concentration of potential toxic metals were much higher in the wastewater than background controls. Wastewater inhibited plant primary root elongation, lateral root formation, and growth of aerial part. Seedlings treated with the effluents were unhealthy with deep purple leaves and usually died before flowering. Chlorophyll a/b contents and chloroplast number were reduced in those abnormal mesophyll cells. Transcriptional levels were decreased for chloroplast formation genes, but increased for those participated in chloroplast degradation and catabolism. Six out of nine tested senescence-associated genes were up-regulated. Furthermore, our results show that endogenous toxic metal levels indeed increased after wastewater treatment. Altogether, these results indicated that the potential toxic metals rich wastewater had significant inhibition on plant growth and led to senescence-associated program cell death, which could be helpful for the government and enterprises to understand the environmental risks and formulate reasonable wastewater emission standards for the stone processing industry.


Asunto(s)
Metales Pesados , Aguas Residuales , Biodegradación Ambiental , Clorofila A , Crecimiento y Desarrollo
2.
Environ Sci Pollut Res Int ; 29(46): 70202-70208, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35583761

RESUMEN

In eutrophic waters, harmful algal blooms (HAB) are particularly prone to occur, which will affect the ecological environment and public health and safety. How to quickly detect and monitor marine microalgae is the key to preventing and managing HAB. Our innovative application of colloidal gold immunochromatography (GICG) technology to detect the dominant species in red tide, Skeletonema pseudocostatum, to monitor the outbreak of red tide. The experimental results show that the method and the prepared test strips are extremely sensitive and can specifically detect the presence of Skeletonema pseudocostatum. The approximate concentration of algae cells is judged by establishing a fitting relationship between the degree of color development and the concentration of algae cells. This test strip provides a quick and easy method for routine environmental monitoring, fishery water quality monitoring, and field testing of red tide monitoring. It effectively warns of the outbreak of red tides and also provides a new application direction for GICG technology.


Asunto(s)
Diatomeas , Floraciones de Algas Nocivas , Monitoreo del Ambiente , Oro Coloide , Calidad del Agua
3.
J Nanosci Nanotechnol ; 19(11): 6924-6932, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31039843

RESUMEN

This study explored a facile one-step hydrothermal method of preparing a high-performance photocatalyst, namely, graphene-TiO2, for oxytetracycline (OTC) removal. The nanocomposites were characterized by Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy, UV-Vis diffuse reflectance spectroscopy and X-ray diffraction (XRD). The photocatalytic properties of different graphene loading types and various OTC initial concentrations, temperatures, and initial pH values were investigated. Results showed that the material with 10% graphene content exhibited the best performance and removal efficiency (beyond 99%) of OTC within 180 min at 35 °C and pH 5.5. The effects of different reactive oxygen species scavengers on photodegradation and the contributions were evaluated, and a possible reaction mechanism was proposed. Caenorhabditis elegans was used for toxicity testing during the entire degradation process and achieved a favorable result.


Asunto(s)
Grafito , Oxitetraciclina , Animales , Caenorhabditis elegans , Grafito/toxicidad , Oxitetraciclina/toxicidad , Espectroscopía Infrarroja por Transformada de Fourier , Titanio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA