Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 16(6): 653-62, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25867473

RESUMEN

The methylcytosine dioxygenase TET1 ('ten-eleven translocation 1') is an important regulator of 5-hydroxymethylcytosine (5hmC) in embryonic stem cells. The diminished expression of TET proteins and loss of 5hmC in many tumors suggests a critical role for the maintenance of this epigenetic modification. Here we found that deletion of Tet1 promoted the development of B cell lymphoma in mice. TET1 was required for maintenance of the normal abundance and distribution of 5hmC, which prevented hypermethylation of DNA, and for regulation of the B cell lineage and of genes encoding molecules involved in chromosome maintenance and DNA repair. Whole-exome sequencing of TET1-deficient tumors revealed mutations frequently found in non-Hodgkin B cell lymphoma (B-NHL), in which TET1 was hypermethylated and transcriptionally silenced. Our findings provide in vivo evidence of a function for TET1 as a tumor suppressor of hematopoietic malignancy.


Asunto(s)
Linfocitos B/fisiología , Citosina/análogos & derivados , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/fisiología , Linfoma de Células B/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , 5-Metilcitosina/análogos & derivados , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Inestabilidad Cromosómica , Citosina/metabolismo , Metilación de ADN , Reparación del ADN , Proteínas de Unión al ADN/genética , Epigénesis Genética , Exoma/genética , Perfilación de la Expresión Génica , Humanos , Ratones , Mutación/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Supresoras de Tumor/genética
2.
Sensors (Basel) ; 24(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38339711

RESUMEN

Sulfur hexafluoride (SF6) gas is extensively utilized as an insulating and arc-quenching medium in the circuit breakers and isolating switches of electrical equipment. It effectively isolates the circuits from the atmosphere and promptly extinguishes arcs. Therefore, the issue of SF6 gas leakage poses a significant threat to the related application fields, and the detection of SF6 gas leakage becomes extremely important. Infrared imaging detection offers advantages including non-contact, high precision, and visualization. However, most existing infrared detection systems are equipped with only one filter to detect SF6 gas. The images captured contain background noise and system noise, making these systems vulnerable to interference from such noises. To address these issues, we propose a method for monitoring SF6 gas leakage based on a customized binocular imaging (CBI) system. The CBI system has two filters, greatly reducing the interference of system noise and background noise. The first filter features the absorption resonant peak of SF6 gas. The second filter is used to record background noise and system noise. One aspect to note is that, in order to avoid the interference of other gases, the central wavelength of this second filter should keep away from the absorption resonant peaks of those gases. Accordingly, the central wavelengths of our customized filters were determined as 10,630 nm and 8370 nm, respectively. Then, two cameras of the same type were separately assembled with a customized filter, and the CBI prototype was accomplished. Finally, we utilized the difference method using two infrared images captured by the CBI system, to monitor the SF6 gas leakage. The results demonstrate that our developed system achieves a high accuracy of over 99.8% in detecting SF6 gas. Furthermore, the CBI system supports a plug-and-play customization to detect various gases for different scenarios.

3.
Small ; 19(16): e2206868, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36710247

RESUMEN

Wearable glucose sensors are of great significance and highly required in mobile health monitoring and management but suffering from limited long-term stability and wearable adaptability. Here a simultaneous component and structure engineering strategy is presented, which involves Pt with abundant Ni to achieve three-dimensional, dual-structural Pt-Ni hydrogels with interconnected networks of PtNi nanowires and Ni(OH)2 nanosheets, showing prominent electrocatalytic activity and stability in glucose oxidation under neutral condition. Specifically, the PtNi(1:3) dual hydrogels shows 2.0 and 270.6 times' activity in the glucose electro-oxidation as much as the pure Pt and Ni hydrogels. Thanks to the high activity, structural stability, good flexibility, and self-healing property, the PtNi(1:3) dual gel-based non-enzymatic glucose sensing chip is endowed with high performance. It features a high sensitivity, an excellent selectivity and flexibility, and particularly an outstanding long-term stability over 2 months. Together with a pH sensor and a wireless circuit, an accurate, real-time, and remote monitoring of sweat glucose is achieved. This facile design of novel dual-structural metallic hydrogels sheds light to rationally develop new functional materials for high-performance wearable biosensors.


Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Glucosa/química , Níquel/química , Platino (Metal)/química , Hidrogeles , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos
4.
Opt Express ; 31(2): 1475-1485, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36785182

RESUMEN

As one of the simplest methods to construct snapshot spectral imagers, multispectral filter array (MSFA) has been applied to commercial miniatured spectral imagers. While most of them have fixed configurations of spectral channels, lacking flexibility and replaceability. Moreover, conventional MSFA only comprises filtering channels but lacks the panchromatic channel which is essential in detecting dim and indistinct objects. Here, we propose a modular assembly method for snapshot imager which can simultaneously acquire the object's multispectral and panchromatic information based on a customized filter array. The multispectral-panchromatic filter array is batch fabricated and integrated with the imaging senor through a modular mode. Five-band spectral images and a broadband intensity image can be efficiently acquired in a single snapshot photographing. The efficacy and accuracy of the imager are experimentally verified in imaging and spectral measurements. Owing to the modular architecture, our proposed assembly method owns the advantages of compactness, simple assembling, rapid replacement, and customized designing, which overcomes the expensiveness and complexity of scientific-level snapshot spectral imaging systems.

5.
Opt Express ; 31(22): 35519-35528, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-38017720

RESUMEN

Benefitting from the inherent merits of tiny volume, customizable performance, good system compatibility and high-yield production, micro-electro-mechanical-system-based Fabry-Perot filtering chip (MEMS-FPFC) with a large aperture size gives a feasible way for the realization of miniaturized spectral imagers which can serve in many civilian and military scenarios. Although the aperture size of MEMS-FPFCs in mid-wave and long-wave infrared has reached to the centimeter scale, that of visible wavelength (VIS) MEMS-FPFC is always unsatisfied which is mainly limited by micromachining stress, especially in the thin films. In this work, we propose a large-aperture electromagnetically actuated MEMS-FPFC based on Si3N4 supporting membrane for VIS spectral imaging, which is designed with the assistance of multi-field coupling simulation model. A low-stress wafer-scale bulk micromachining process is developed to guarantee the high-quality and high-yield production for the aimed VIS MEMS-FPFCs. Finally, by the strictly controlling and rationally allocating the film stress of multi-layer film stack, VIS MEMS-FPFCs with 6 mm aperture size are thus developed, which can be tuned bidirectionally and continuously in 612-678 nm waveband with a good linear response of better than 95%. The achieved VIS MEMS-FPFCs can be utilized to construct miniaturized spectral imagers directly, aiming for such applications as intelligent agriculture, environmental protection and industrial inspection.

6.
Opt Express ; 31(22): 37229-37240, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-38017856

RESUMEN

The line scanning hyperspectral imaging system (LS-HIS), which relies on a mechanical slit or spatial light modulation device for single channel spatial scanning, is widely used in various fields such as biomedical imaging and remote sensing. However, in scenes that require low light illumination, a decrease in luminous flux will increase exposure time, leading to a significant decrease in scanning efficiency and signal-to-noise ratio (SNR). To address this issue, we present a flexible column coded scanning aperture hyperspectral imaging system (CCSA-HIS) using a spatial light modulator digital micromirror device (DMD). By introducing the concept of multiplex and constructing a multiplexing encoding matrix, we form a one-dimensional multi-column coded scanning aperture, which greatly improves scanning efficiency. Experimental comparisons demonstrate that this approach achieves higher SNR and equivalent spatial and spectral resolution in significantly less sampling time compared to LS-HIS. In short, our scheme provides a new imaging technology for the field of hyperspectral imaging with good theoretical value and engineering significance.

7.
Opt Lett ; 48(7): 1590-1593, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37221717

RESUMEN

Sub-diffraction-limit quasi-non-diffracting light sheets (SQLSs) are crucial for a resolution-enhanced and field of view (FOV)-enlarged light sheet microscope. However, it has aways been plagued by sidelobes inducing severe background noise. Here, a self-trade-off optimized method is proposed to generate sidelobe-suppressed SQLSs based on super-oscillatory lenses (SOLs). An SQLS thus obtained shows sidelobes of only 15.4%, first realizing the sub-diffraction-limit thickness, quasi-non-diffracting characteristic, and suppressed sidelobes simultaneously for static light sheets. Moreover, a window-like energy allocation is realized by the self-trade-off optimized method, successfully further suppressing the sidelobes. In particular, an SQLS with theoretical sidelobes of 7.6% is achieved within the window, which provides a new strategy to deal with sidelobes for light sheets and shows great potential in high signal-to-noise ratio light sheet microscopy (LSM).

9.
Opt Express ; 30(23): 42541-42552, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36366706

RESUMEN

Longwave infrared spectral imaging (LWIR-SI) has potential in many important civilian and military fields. However, conventional LWIR-SI systems based on traditional dispersion elements always suffer the problems of high cost, large volume and complicated system structure. Micro-electro-mechanical systems Fabry-Perot filtering chips (MEMS-FPFC) give a feasible way for realizing miniaturized, low cost and customizable LWIR-SI systems. The LWIR MEMS-FPFC ever reported can't meet the demands of the next-generation LWIR-SI systems, due to the limitation of small aperture size and nonlinear actuation. In this work, we propose a large-aperture, widely and linearly tunable electromagnetically actuated MEMS-FPFC for LWIR-SI. A multi-field coupling simulation model is built and the wafer-scale bulk-micromachining process is applied to realize the design and fabrication of the proposed MEMS-FPFC. Finally, with the rational structural design and fabrication process, the filtering chip after packaging has an aperture size of 10 mm, which is the largest aperture size of LWIR MEMS-FPFC ever reported. The fabricated electromagnetically actuated MEMS-FPFC can be tuned continuously across the entire LWIR range of 8.39-12.95 µm under ±100 mA driving current with a pretty good linear response of better than 98%. The developed electromagnetically actuated MEMS-FPFC can be directly used for constructing miniaturized LWIR-SI systems, aiming for such applications as military surveillance, gas sensing, and industry monitoring.

10.
Opt Lett ; 47(13): 3267-3270, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776602

RESUMEN

Static light sheets are widely used in various super-resolution three-dimensional (3D) imaging applications. Here, a multifocal diffraction-free optimized design method is proposed for super-oscillatory lenses (SOLs) owning an enlarged field of view (FOV) to generate sub-diffraction-limit light sheets with reduced divergence. Various propagation lengths of sub-diffraction-limit thickness for light sheets can be obtained by adopting corresponding numbers of discrete foci and spacing between them. In particular, the propagation lengths of 150.4λ and 118.9λ are obtained by SOLs with an enlarged FOV of 150λ and 820λ, respectively, which show the longest depth of focus (DOF), as far as we know, and are the first to realize the combination of enlarged DOF and FOV for SOLs. We show a way of using binary-amplitude modulation to generate static light sheets with sub-diffraction-limit thickness and reduced divergence, which is simple, easy to integrate, and sidelobe-suppressed.

11.
Opt Lett ; 47(18): 4758-4761, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36107083

RESUMEN

We propose a non-paraxial diffraction model of the digital micromirror device (DMD) by combining the conventional Fraunhofer diffraction and a simple method of coordinative mapping. It is equivalent to adding aberrations of diffracted wave fields to the aberration-free Fraunhofer diffraction instead of complex integral calculations, allowing the simulated diffraction patterns to be consistent with the actual experimental counterparts. Moreover, it is verified by the experiments and literature that the diffraction angles, orders, and efficiency can all be well predicted for arbitrary incident angles and wavelengths. Especially for diffracted zenith angles within 50°, the predicted values reveal ∼1% error, and in a broader range, the predicted errors of diffracted azimuth angles are less than 4%. To the best of our knowledge, it is the first model capable of describing the non-paraxial diffraction behavior of the DMD. The proposed model with universality and effectiveness will help users to optimally construct DMD-based optical systems by guiding optical layouts, selection of light sources, and utilization and suppression of diffraction effects.

12.
Anal Chem ; 93(42): 14068-14075, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34636245

RESUMEN

Wearable biosensors for real-time and non-invasive detection of biomarkers are of importance in early diagnosis and treatment of diseases. Herein, a high-performance wearable biosensing platform was proposed by combining a three-dimensional hierarchical porous Au hydrogel-enzyme electrode with high biocompatibility, activity, and flexibility and soft-MEMS technologies with high precision and capability of mass production. Using glucose oxidase as the model enzyme, the glucose sensor exhibits a sensitivity of 10.51 µA mM-1 cm-2, a long durability over 15 days, and a good selectivity. Under the mechanical deformation (0 to 90°), it is able to maintain an almost constant performance with a low deviation of <1.84%. With the assistance of a wireless or a Bluetooth module, this wearable sensing platform achieves real-time and non-invasive glucose monitoring on human skins. Similarly, continuous lactic acid monitoring was also realized with lactate oxidase immobilized on the same sensing platform, further verifying the universality of this sensing platform. Therefore, our work holds promise to provide a universal, high-performance wearable biosensing platform for various biomarkers in sweat and reliable diagnostic information for health management.


Asunto(s)
Técnicas Biosensibles , Sistemas Microelectromecánicos , Dispositivos Electrónicos Vestibles , Glucemia , Automonitorización de la Glucosa Sanguínea , Humanos , Hidrogeles , Porosidad , Sudor
13.
Opt Express ; 29(21): 33785-33794, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34809183

RESUMEN

A smart digital micromirror device (DMD) was employed to realize the on-chip scanning in versatile hyperspectral imaging (HSI) systems in our previous research. However, the rotation manner around the diagonal of the DMD makes the imaging subsystem and the spectral dispersion subsystem unable to be in the same horizontal surface. This leads to the difficulty in designing the opto-mechanical structures, system assembly and adjustment of the light path to a certain extent. On the other hand, the HSI system also needs a larger space to accommodate the two subsystems simultaneously since either of them has to incline against the horizontal surface. Moreover, there exists the interference of the reflected light between the adjacent micromirrors during the scanning process performed by the DMD, causing the loss of optical information about the object. Here, a novel linear micromirror array (MMA) based on the microelectromechanical system process that rotates around one lateral axis of the micromirror is developed, which is helpful to simplify the optical system of HSI and obtain more optical information about the detected target. The MMA has 32 independent linear micromirrors across an aperture of 5mm×6.5mm, under which there are dimple structures and a common bottom electrode. Finally, the MMA with a 98.6% filling factor is successfully fabricated by employing the bulk micromachining process. The experimental results show that the maximum rotational angle is 5.1° at a direct current driving voltage of 30 V. The proposed micromirror array is promising to replace the DMD and shows potential as a spatial light modulator in the fields of hyperspectral imaging, optical communication, and so on.

14.
Opt Express ; 29(10): 15747-15763, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33985270

RESUMEN

A novel spatial and temporal super-resolution (SR) framework based on a recurrent neural network (RNN) is demonstrated. In this work, we learn the complex yet useful features from the temporal data by taking advantage of structural characteristics of RNN and a skip connection. The usage of supervision mechanism is not only making full use of the intermediate output of each recurrent layer to recover the final output, but also alleviating vanishing/exploding gradients during the back-propagation. The proposed scheme achieves excellent reconstruction results, improving both the spatial and temporal resolution of fluorescence images including the simulated and real tubulin datasets. Besides, robustness against various critical metrics, such as the full-width at half-maximum (FWHM) and molecular density, can also be incorporated. In the validation, the performance can be increased by more than 20% for intensity profile, and 8% for FWHM, and the running time can be saved at least 40% compared with the classic Deep-STORM method, a high-performance net which is popularly used for comparison.

15.
Opt Express ; 29(15): 23273-23281, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34614594

RESUMEN

Dynamic structural color has attracted considerable attentions due to its good tunable characteristics. Here, an ultrathin asymmetric Fabry-Perot (FP)-type structural color with phase-change material VO2 cavity is proposed. The color-switching performance can be realized by temperature regulation due to the reversible monoclinic-rutile phase transition of VO2. The various, vivid structural color can be generated by simply changing the thickness of VO2 and Ag layers. Moreover, the simple structural configuration enables a large-scale, low-cost preparation on both rigid and flexible substrates. Accordingly, a flexible dynamic structural color membrane is adhered on a cup with a curved surface to be used for temperature perception. The proposed dynamic structural color has potential applications in anti-counterfeiting, temperature perception, camouflage coatings among other flexible optoelectronic devices.

16.
Opt Express ; 29(19): 30655-30665, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34614786

RESUMEN

Snapshot multispectral imaging (MSI) has been widely employed in the rapid visual inspection by virtues of the non-invasive detection mode and short integration time. As the critical functional elements of snapshot MSI, narrowband, customizable, and pixel-level multispectral filter arrays (MSFAs) that are compatible with imaging sensors are difficult to be efficiently manufactured. Meanwhile, monolithically integrating MSFAs into snapshot multispectral imagers still remains challenging considering the strict alignment precision. Here, we propose a cost-efficient, wafer-level, and customized approach for fabricating transmissive MSFAs based on Fabry-Perot structures, both in the pixel-level and window-tiled configuration, by utilizing the conventional lithography combined with the deposition method. The MSFA chips own a total dimension covering the area of 4.8 mm × 3.6 mm with 4 × 4 bands, possessing the capability to maintain narrow line widths (∼25 nm) across the whole visible frequencies. After the compact integration with the imaging sensor, the MSFAs are validated to be effective in filtering and target identification. Our proposed fabrication method and imaging mode show great potentials to be an alternative to MSFAs production and MSI, by reducing both complexity and cost of manufacturing, while increasing flexibility and customization of imaging system.


Asunto(s)
Filtración/instrumentación , Nanoestructuras , Nanotecnología/métodos , Óxido de Aluminio , Color , Espectroscopía Dieléctrica , Nanoestructuras/economía , Nanotecnología/economía , Silicio , Plata
17.
BMC Geriatr ; 21(1): 64, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33461492

RESUMEN

BACKGROUND: The transition to residential care facilities can be stressful for older people, entailing numerous challenges. Many qualitative studies focused on the adjustment and the experiences associated with older adults' admission to residential care facilities. However, there have been few studies to synthesize qualitative studies and pay attention to the cultural factors influencing adaptation. The aim is to appraise the adaptation of older people' s transition to the residential care facilities. METHODS: We followed the method of Preferred Reporting Items of Systematic Review and Meta-Analysis (PRISMA). Six databases (CINHAL, Cochrane, Embase, Pubmed, PsycInfo, and Web of Science) were searched systematically from their inception until April 2020 using Medical Subject Headings (MSH) or Subject Headings plus free-text words. The CASP evaluation for qualitative studies was used for quality appraisal and meta-aggregation was used in the data analysis. RESULTS: Ten studies (from 7 countries on 3 continents) were included in this review. We synthesized two main findings: the impacts of culture on adaptation and the transition process. CONCLUSIONS: Understanding the cultural factors helps nursing staff to gain new insight into older adults' transition to residential care facilities. The consideration of cultural factors might be incorporated into tailored interventions for residents during transition. Nursing staff is advised to pay attention to the decision-making process before residents' admission to the residential care facilities, and care plans are best made by residents, family members, and staff members together at the beginning of the decision-making process.


Asunto(s)
Instituciones de Vida Asistida , Personal de Enfermería , Anciano , Anciano de 80 o más Años , Familia , Humanos , Investigación Cualitativa , Instituciones Residenciales
18.
Genome Res ; 27(11): 1830-1842, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28986391

RESUMEN

Transcriptional deregulation of oncogenic pathways is a hallmark of cancer and can be due to epigenetic alterations. 5-Hydroxymethylcytosine (5-hmC) is an epigenetic modification that has not been studied in pancreatic cancer. Genome-wide analysis of 5-hmC-enriched loci with hmC-seal was conducted in a cohort of low-passage pancreatic cancer cell lines, primary patient-derived xenografts, and pancreatic controls and revealed strikingly altered patterns in neoplastic tissues. Differentially hydroxymethylated regions preferentially affected known regulatory regions of the genome, specifically overlapping with known H3K4me1 enhancers. Furthermore, base pair resolution analysis of cytosine methylation and hydroxymethylation with oxidative bisulfite sequencing was conducted and correlated with chromatin accessibility by ATAC-seq and gene expression by RNA-seq in pancreatic cancer and control samples. 5-hmC was specifically enriched at open regions of chromatin, and gain of 5-hmC was correlated with up-regulation of the cognate transcripts, including many oncogenic pathways implicated in pancreatic neoplasia, such as MYC, KRAS, VEGFA, and BRD4 Specifically, BRD4 was overexpressed and acquired 5-hmC at enhancer regions in the majority of neoplastic samples. Functionally, acquisition of 5-hmC at BRD4 promoter was associated with increase in transcript expression in reporter assays and primary samples. Furthermore, blockade of BRD4 inhibited pancreatic cancer growth in vivo. In summary, redistribution of 5-hmC and preferential enrichment at oncogenic enhancers is a novel regulatory mechanism in human pancreatic cancer.


Asunto(s)
5-Metilcitosina/análogos & derivados , Neoplasias Pancreáticas/genética , Secuencias Reguladoras de Ácidos Nucleicos , Análisis de Secuencia de ARN/métodos , 5-Metilcitosina/metabolismo , Animales , Línea Celular Tumoral , Epigénesis Genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Histonas/metabolismo , Humanos , Ratones , Trasplante de Neoplasias , Modelación Específica para el Paciente
19.
Opt Express ; 28(12): 18431-18439, 2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32680041

RESUMEN

A novel fiber optic extrinsic Fabry-Perot interferometric (EFPI) ultrasonic sensor with two resonant frequencies for detecting the partial discharges (PDs) in switchgear is demonstrated. The key sensing element consists of two 5-µm-thickness and beam-supported silicon diaphragms, whose natural frequencies are designed differently to enable the sensor to achieve the resonant responses at two different frequencies, thus obtaining a broadened frequency response. The sensing element is fabricated by employing the microelectromechanical systems (MEMS) technology on a silicon-on-insulator (SOI) wafer. The experimental results show that the sensor possesses two resonant frequencies of 31 kHz and 63 kHz, and obviously, shows a highly sensitive frequency response over a broader range compared with the approach composed of a single sensing diaphragm with only one resonant frequency. The noise-limited minimum detectable ultrasonic pressure (MDUP) reaches 251 µPa/Hz1/2@ 31 kHz and 316 µPa/Hz1/2@ 63 kHz, respectively.

20.
Opt Express ; 28(20): 29368-29376, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-33114838

RESUMEN

Fiber optic extrinsic Fabry-Perot interferometric (EFPI) sensors are ideal candidates for on-line partial discharges (PDs) monitoring due to their inherent advantages, such as immunity to electromagnetic interference (EMI), highly compact sensing probes, and remote signal transmission. However, up to date, the design and fabrication of high-performance sensing diaphragms still remain challenging, and most of the reported diaphragms utilize circular structures with the peripheral sidewalls completely fixed. Herein, a novel EFPI ultrasonic sensor for on-line PDs monitoring is demonstrated. The proposed sensing diaphragm combines a silicon beam-supported diaphragm and a fixed boundary ring with a thickness of 5 µm, which was optimized through the multi-objective genetic algorithm (MOGA) revealing its high design flexibility and manufactured by using the microelectromechanical systems (MEMS) processing technology on a silicon-on-insulator (SOI) wafer. Compared with the circular and beam-supported diaphragm, the developed structure exhibits a higher sensitivity. The testing results show that the developed sensor owns the sensitivity and noise-limited minimum detectable ultrasonic pressure (MDUP) of -10 dB re. 1V/Pa and 63 µPa/sqrt(Hz) at its designed resonant frequency, respectively. Finally, the sensor's ability to detect PDs is validated in a temporary built PDs experimental environment, further proving its great potential to perform the on-line PDs monitoring.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA