Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(18): e2319751121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38662548

RESUMEN

Defect engineering has been widely applied in semiconductors to improve photocatalytic properties by altering the surface structures. This study is about the transformation of inactive WO3 nanosheets to a highly effective CO2-to-CH4 conversion photocatalyst by introducing surface-ordered defects in abundance. The nonstoichiometric WO3-x samples were examined by using aberration-corrected electron microscopy. Results unveil abundant surface-ordered terminations derived from the periodic {013} stacking faults with a defect density of 20.2%. The {002} surface-ordered line defects are the active sites for fixation CO2, transforming the inactive WO3 nanosheets into a highly active catalyst (CH4: O2 = 8.2: 16.7 µmol h-1). We believe that the formation of the W-O-C-W-O species is a critical step in the catalytic pathways. This work provides an atomic-level comprehension of the structural defects of catalysts for activating small molecules.

2.
J Am Chem Soc ; 146(13): 9124-9133, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38515273

RESUMEN

Single-atom catalysis (SAC) attracts wide interest for zinc-air batteries that require high-performance bifunctional electrocatalysts for oxygen reactions. However, catalyst design is still highly challenging because of the insufficient driving force for promoting multiple-electron transfer kinetics. Herein, we report a superstructure-assisted SAC on tungsten carbides for oxygen evolution and reduction reactions. In addition to the usual single atomic sites, strikingly, we reveal the presence of highly ordered Co superstructures in the interfacial region with tungsten carbides that induce internal strain and promote bifunctional catalysis. Theoretical calculations show that the combined effects from superstructures and single atoms strongly reduce the adsorption energy of intermediates and overpotential of both oxygen reactions. The catalyst therefore presented impressive bifunctional activity with an ultralow potential gap of 0.623 V and delivered a high power density of 188.5 mW cm-2 for assembled zinc-air batteries. This work opens up new opportunities for atomic catalysis.

3.
Sensors (Basel) ; 23(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37420749

RESUMEN

The safety of railway transportation is crucial to social and economic development. Therefore, real-time monitoring of the rail is particularly necessary. The current track circuit structure is complex and costly, posing challenges to monitoring broken tracks using alternative methods. As a non-contact detection technology with a lower environmental impact, electromagnetic ultrasonic transducers (EMATs) have become a concern. However, traditional EMATs have problems such as low conversion efficiency and complex modes, which can limit their effectiveness for long-distance monitoring. Therefore, this study introduces a novel dual-magnet phase-stacked EMAT (DMPS-EMAT) design comprising two magnets and a dual-layer winding coil arrangement. The magnets are positioned at a distance equal to the wavelength of the A0 wave from each other, while the center distance between the two sets of coils beneath the transducer is also equal to the wavelength. After analyzing the dispersion curves of the rail waist, it was determined that the optimal frequency for long-distance rail monitoring is 35 kHz. At this frequency, adjusting the relative positions of the two magnets and the coil directly underneath to be one A0 wavelength can effectively excite a constructive interference A0 wave in the rail waist. The simulation and experimental results show that DMPS-EMAT excited a single-mode A0 wave, resulting in a 1.35-times increase in amplitude.


Asunto(s)
Imanes , Tecnología , Simulación por Computador , Transductores , Transportes
4.
Angew Chem Int Ed Engl ; 62(14): e202216434, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36748541

RESUMEN

Poly (triazine imide) photocatalysts prepared via molten salt methods emerge as promising polymer semiconductors with one-step excitation capacity of overall water splitting. Unveiling the molecular conjugation, nucleation, and crystallization processes of PTI crystals is crucial for their controllable structure design. Herein, microscopy characterization was conducted at the PTI crystallization front from meso to nano scales. The heptazine-based precursor was found to depolymerize to triazine monomers within molten salts and KCl cubes precipitate as the leading cores that guide the directional stacking of PTI molecular units to form aggregated crystals. Upon this discovery, PTI crystals with improved dispersibility and enhanced photocatalytic performance were obtained by tailoring the crystallization fronts. This study advances insights into the directional assembling of PTI monomers on salt templates, placing a theoretical foundation for the ordered condensation of polymer crystals.

5.
Angew Chem Int Ed Engl ; 62(37): e202304694, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37162371

RESUMEN

In situ photo-deposition of both Pt and CoOx cocatalysts on the facets of poly (triazine imide) (PTI) crystals has been developed for photocatalytic overall water splitting. However, the undesired backward reaction (i.e., water formation) on the noble Pt surface is a spontaneously down-hill process, which restricts their efficiency to run the overall water splitting reaction. Herein, we demonstrate that the efficiency for photocatalytic overall water splitting could be largely promoted by the decoration of Rh/Cr2 O3 and CoOx as H2 and O2 evolution cocatalysts, respectively. Results reveal that the dual cocatalysts greatly extract charges from bulk to surface, while the Rh/Cr2 O3 cocatalyst dramatically restrains the backward reaction, achieving an apparent quantum efficiency (AQE) of 20.2 % for the photocatalytic overall water splitting reaction.

6.
Chemistry ; 28(56): e202201590, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-35894115

RESUMEN

The selective immobilization of noble metals right at the place where photogenerated electrons migrate through the photodeposition approach is a unique strategy to load cocatalysts on semiconductors for solar hydrogen production. However, a poor metal-semiconductor interaction is often formed, which not only hinders the interfacial charge transfer, but also results in the easy aggregation and shedding of cocatalysts during photocatalytic reactions. Herein, it is demonstrated that the photodeposited ultrafine metals, such as nanosized Au, can be well stabilized on TiO2 nanocrystallines without sintering by employing a sacrificial carbon coating annealing strategy to strengthen the metal-support interaction. Benefiting from the improved interfacial contact between Au and TiO2 for fast charge transfer and the well-preserved size-dependent catalytic behavior of Au nanoparticles toward hydrogen evolution reaction, the annealed Au/TiO2 exhibits a significant enhanced activity toward photocatalytic H2 production with good durability.

7.
Angew Chem Int Ed Engl ; 61(47): e202210849, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36175390

RESUMEN

The construction of heterojunctions is a promising manner to accelerate the separation and transfer of the charge carriers at the interface. Herein, a binary poly(heptazine-triazine) imides (PHI/PTI) with semi-coherent interfaces was fabricated via a facile two-step salt-melt synthetic process. The built-in electric fields at the semi-coherent interface endow prompt exciton splitting and charge carrier separation. Hence, the optimized PHI/PTI-based copolymer presents a high apparent quantum yield (AQY=64 %) for visible-light driven hydrogen production, by the aids of K2 HPO4 as charge transfer mediator. This study provides physical insights for the rational promotion of the photocatalytic performance from the viewpoint of interfacial engineering of photocatalytic junctions on crystalline carbon nitride based semiconductors.

8.
Angew Chem Int Ed Engl ; 61(2): e202113389, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34750939

RESUMEN

Conventional polymerization for the synthesis of carbon nitride usually generates amorphous heptazine-based melon with an abundance of undesired structural defects, which function as charge carrier recombination centers to decrease the photocatalytic efficiency. Herein, a fully condensed poly (triazine imide) crystal with extended π-conjugation and deficient structure defects was obtained by conducting the polycondensation in a mild molten salt of LiCl/NaCl. The melting point of the binary LiCl/NaCl system is around 550 °C, which substantially restrain the depolymerization of triazine units and extend the π-conjugation. The optimized polymeric carbon nitride crystal exhibits a high apparent quantum efficiency of 12 % (λ=365 nm) for hydrogen production by one-step excitation overall water splitting, owing to the efficient exciton dissociation and the subsequent fast transfer of charge carriers.

9.
Angew Chem Int Ed Engl ; 58(19): 6164-6175, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-30345661

RESUMEN

Conjugated carbon nitride (CN) is an emerging and promising semiconductor photocatalyst for water photolysis owing to its unique properties. However, the traditional thermally induced polymerization of N-containing precursors typically produces melon-based CN solids with amorphous or semi-crystalline structures with only moderate photocatalytic performance. Many strategies have been developed to prepare crystalline CNs (CCNs), such as high-temperature and high-pressure routes, ionothermal synthesis, and microwave-assisted synthesis. In this Minireview, we summarize the progress that has been made in the synthesis of CCNs and their application in photocatalytic water splitting reactions. Three kinds of CCNs are mainly discussed according to their polymeric subunits. Challenges associated with CCNs and their future development are also included.

10.
Langmuir ; 34(9): 2942-2951, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29433306

RESUMEN

Like their biogenic counterparts, synthetic minerals with hierarchical architectures should exhibit multiple structural functions, which nicely bridge the boundaries between engineering and functional materials. Nevertheless, design of bioinspired mineralization approaches to thin coatings with distinct micro/nanotextures remains challenging in the realm of materials chemistry. Herein, a general morphosynthetic method based on seeded mineralization was extended to achieve prismatic-type thin CaCO3 coatings on fibrous substrates for oil/water separation applications. Distinct micro/nanotextures of the overlayers could be obtained in mineralization processes in the presence of different soluble (bio)macromolecules. These hierarchical thin coatings therefore exhibit multiple structural functions including underwater superoleophobicity, ultralow adhesion force of oil in water, and comparable stiffness/strength to the prismatic-type biominerals found in mollusk shells. Moreover, this controllable approach could proceed on fibrous substrates to obtain robust thin coatings, so that a modified nylon mesh could be employed for oil/water separation driven by gravity. Our bioinspired approach based on seeded mineralization opens the door for the deposition of hierarchical mineralized thin coatings exhibiting multiple structural functions on planar and fibrous substrates. This bottom-up strategy could be readily extended for the syntheses of advanced thin coatings with a broad spectrum of engineering and functional constituents.

11.
Nano Lett ; 16(12): 7807-7813, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960496

RESUMEN

Dislocations are one-dimensional line defects in three-dimensional crystals or periodic structures. It is common that the dislocation networks made of interactive dislocations be generated during plastic deformation. In van der Waals layered materials, the highly anisotropic nature facilitates the formation of such dislocation networks, which is critical for the friction or exfoliation behavior for these materials. By transmission electron microscopy analysis, we found the topological defects in such dislocation networks can be perfectly rationalized in the framework of traditional dislocation theory, which we applied the name "hyperdislocations". Due to the strong pinning effect of hyperdislocations, the state of exfoliation can be easily triggered by 1° twisting between two layers, which also explains the origin of disregistry and frictionlessness for all of the superlubricants that are widely used for friction reduction and wear protection.

12.
Microsc Microanal ; 21(4): 1034-48, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26223551

RESUMEN

The ex situ lift out (EXLO) adhesion forces are reviewed and new applications of EXLO for focused ion beam (FIB)-prepared specimens are described. EXLO is used to manipulate electron transparent specimens on microelectromechanical systems carrier devices designed for in situ electron microscope analysis. A new patented grid design without a support film is described for EXLO. This new slotted grid design provides a surface for holding the specimen in place and also allows for post lift out processing. Specimens may be easily manipulated into a backside orientation to reduce FIB curtaining artifacts with this slotted grid. Large EXLO specimens can be manipulated from Xe+ plasma FIB prepared specimens. Finally, applications of EXLO and manipulation of FIB specimens using a vacuum probe lift out method are shown. The vacuum probe provides more control for placing specimens on the new slotted grids and also allows for easy manipulation into a backside configuration.

13.
PLoS One ; 19(1): e0296512, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38165985

RESUMEN

The rapid increase in the number of older people under the background of population aging has gradually changed the disease spectrum of society, making aging diseases more prevalent, and increasing the demand for health care services, medical and health services, and health insurance among older people, ultimately leading to increasing household and social spending on old age. This study is conducted to assess the impact of those spending burden on the sustainable development of economy and find out some practical and effective solutions. This paper constructs a theoretical model to illustrate the relationship between the old-age dependency ratio and the marginal product of capital (MPK), and then establishes a two-way fixed effect model based on transnational panel data of 81 countries from 1981 to 2017 to verify this relationship empirically. This paper finds that, after controlling a series of variables, an increased burden of old-age dependency leads to a decline in the MPK, a key macroeconomic variable and also a sustainable development criteria, but in which health care, health security systems, and technological innovation play a key and moderating role. The conclusion is also valid after tackling the problem of endogeneity with different methods, like two-stage least squares (TSLS) and the generalized methods of moments (GMM). Overall, before population aging, countries that are old-but-not-rich should encourage more supply-side investments in public health system or technological innovation, and adjust retirement system, or gradually encourage childbearing to strive for time and space for later sustainable development of public health system and economy.


Asunto(s)
Administración Financiera , Desarrollo Sostenible , Humanos , Anciano , Dinámica Poblacional , Inversiones en Salud , Composición Familiar
14.
Adv Mater ; : e2313608, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970535

RESUMEN

Metal-organic frameworks (MOFs), characterized by tunable porosity, high surface area, and diverse chemical compositions, offer unique prospects for applications in optoelectronic devices. However, the prevailing research on thin-film devices utilizing MOFs has predominantly focused on aspects such as information storage and photosensitivity, often neglecting the integration of the advantages inherent in both photonics and electronics to enhance optical memory. This work demonstrates a light-mediated resistive memory device based on a highly oriented porphyrin-based MOFs film, in which the resistance state of the memristor is modulated by light, realizing the integration of the perception and storage of optical information. The memristor shows excellent performance with a wide light range of 405-785 nm and a persistent photoconductivity phenomenon up to 8.3 × 103 s. Further mechanistic studies have revealed that the resistive switching effect in the memristor is primarily associated with the reversible formation and annihilation of Ag conductive filaments.

15.
Food Chem X ; 22: 101514, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38883919

RESUMEN

The aim of this study was to explore the formation of volatile lipid oxidation products by the lipoxygenase (LOX)-hydroperoxide lyase (HPL)-mediated pathway in oat, barley and soy bean. LOX activity was found only in barley and soy bean samples, but the lipase and HPL activity was detected in all samples. HPL showed particularly high activity with 13-hydroperoxides, while the activity was quite low when using 9-hydroperoxides, especially in the oat and barley. The optimum pH for HPL in different samples was similar, i.e., pH 6-7. In this condition, the volatile compounds formed dramatically with aldehydes and furans as the dominant products. Furthermore, a remarkable enzymatic degradation of lipids occurred during the preparation of food models with highly refined rapeseed oil (RO) and rapeseed oil fatty acid (ROFA) emulsions, where the ROFAs were more prone to oxidation than RO. This study shows the significance of lipid-degrading enzymes in plant-food flavour formation.

16.
J Adv Res ; 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39009133

RESUMEN

INTRODUCTION: Since the outbreak of COVID-19, microplastics (MPs) and triclosan in pharmaceuticals and personal care products (PPCPs) are markedly rising. MPs and triclosan are co-present in the environment, but their interactions and subsequent implications on the fate of triclosan in plants are not well understood. OBJECTIVE: This study aimed to investigate effects of charged polystyrene microplastics (PS-MPs) on the fate of triclosan in cabbage plants under a hydroponic system. METHODS: 14C-labeling method and liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (LC-QTOF-MS) analysis were applied to clarify the bioaccumulation, distribution, and metabolism of triclosan in hydroponics-cabbage system. The distribution of differentially charged PS-MPs in cabbage was investigated by confocal laser scanning microscopy and scanning electron microscopy. RESULTS: The results showed that MPs had a significant impact on bioaccumulation and metabolism of triclosan in hydroponics-cabbage system. PS-COO-, PS, and PS-NH3+ MPs decreased the bioaccumulation of triclosan in cabbage by 69.1 %, 81.5 %, and 87.7 %, respectively, in comparison with the non-MP treatment (control). PS-MPs also reduced the translocation of triclosan from the roots to the shoots in cabbage, with a reduction rate of 15.6 %, 28.3 %, and 65.8 % for PS-COO-, PS, and PS-NH3+, respectively. In addition, PS-NH3+ profoundly inhibited the triclosan metabolism pathways such as sulfonation, nitration, and nitrosation in the hydroponics-cabbage system. The above findings might be linked to strong adsorption between PS-NH3+ and triclosan, and PS-NH3+ may also potentially inhibit the growth of cabbage. Specially, the amount of triclosan adsorbed on PS-NH3+ was significantly greater than that on PS and PS-COO-. The cabbage biomass was reduced by 76.9 % in PS-NH3+ groups, in comparison with the control. CONCLUSION: The uptake and transformation of triclosan in hydroponics-cabbage system were significantly inhibited by charged PS-MPs, especially PS-NH3+. This provides new insights into the fate of triclosan and other PPCPs coexisted with microplastics for potential risk assessments.

17.
Adv Mater ; 36(16): e2311937, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38191131

RESUMEN

Hybridizing two heterocomponents to construct a built-in electric field (BIEF) at the interface represents a significant strategy for facilitating charge separation in carbon dioxide (CO2)-photoreduction. However, the unidirectional nature of BIEFs formed by various low-dimensional materials poses challenges in adequately segregating the photogenerated carriers produced in bulk. In this study, leveraging zinc oxide (ZnO) nanodisks, a sulfurization reaction is employed to fabricate Z-scheme ZnO/zinc sulfide (ZnS) heterojunctions featuring a multiple-order BIEF. These heterojunctions reveal distinctive interfacial structures characterized by two semicoherent phase boundaries. The cathodoluminescence 2D maps and density functional theory calculation results demonstrate that the direction of the multiple-order BIEF spans from ZnS to ZnO. This directional alignment significantly fosters the spatial separation of photogenerated electrons and holes within ZnS nanoparticles and enhances CO2-to-carbon monoxide photoreduction performance (3811.7 µmol h-1 g-1). The findings present a novel pathway for structurally designing BIEFs within heterojunctions, while providing fresh insights into the migratory behavior of photogenerated carriers across interfaces.

18.
Sci Total Environ ; 946: 173858, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38876353

RESUMEN

Increasing use and release of graphene nanomaterials and pharmaceutical and personal care products (PPCPs) in soil environment have polluted the environment and posed high ecological risks. However, little is understood about the interactive effects and mechanism of graphene on the behaviors of PPCPs in soil. In the present study, the effects of reduced graphene oxide nanomaterials (RGO) on the fate of triclosan in two typical soils (S1: silty loam; S2: silty clay loam) were investigated with 14C-triclosan, high-resolution mass spectrometry, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), density functional theory (DFT) calculations, and microbial community structure analysis. The results showed that RGO prolonged the half-life of triclosan by 23.6-51.3 %, but delayed the formation of transformed products such as methyl triclosan and dechlorinated dimer of triclosan in the two typical soils. Mineralization of triclosan to 14CO2 was inhibited by 48.2-79.3 % in 500 mg kg-1 RGO in comparison with that in the control, whereas the bound residue was 54.2-56.4 % greater than the control. RGO also reduced the relative abundances of triclosan-degrading bacteria (Pseudomonas and Sphingomonas) in soils. Compared to silty loam, RGO more effectively inhibited triclosan degradation in silty clay loam. Furthermore, the DFT calculations suggested a strong association of the adsorption of triclosan on RGO with the van der Waals forces and π-π interactions. These results revealed that RGO inhibited the transformation of 14C-triclosan in soil through strong adsorption and triclosan-degrading bacteria inhibition in soils. Therefore, the presence of RGO may potentially enhance persistence of triclosan in soil. Overall, our study provides valuable insights into the risk assessment of triclosan in the presence of GNs in soil environment.

19.
Adv Mater ; 36(28): e2400059, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38684087

RESUMEN

Materials that can provide reliable electromagnetic interference (EMI) shielding in highly oxidative atmosphere at elevated temperature are indispensable in the fast-developing aerospace field. However, most of conductor-type EMI shielding materials such as metals can hardly withstand the high-temperature oxidation, while the conventional dielectric-type materials cannot offer sufficient shielding efficiency in gigahertz (GHz) frequencies. Here, a highly deficient medium-entropy (ME) perovskite ceramic as an efficient EMI shielding material in harsh environment, is demonstrated. The synergistic effect of entropy stabilization and aliovalent substitution on A-site generate abnormally high concentration of Ti and O vacancies that are stable under high-temperature oxidation. Due to the clustering of vacancies, the highly deficient perovskite ceramic exhibits giant complex permittivity and polarization loss in GHz, leading to the specific EMI shielding effectiveness above 30 dB/mm in X-band even after 100 h of annealing at 1000 °C in air. Along with the low thermal conductivity, the aliovalent ME perovskite can serve as a bifunctional shielding material for applications in aircraft engines and reusable rockets.

20.
Sci Adv ; 10(25): eadn2707, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38896618

RESUMEN

Nanoconfined catalysts enhance stabilization of reaction intermediates, facilitate electron transfer, and safeguard active centers, leading to superior electrocatalytic activity, particularly in CO2 reduction reactions (CO2RR). Despite their effectiveness, crafting nanoconfined catalysts is challenging due to unclear formation mechanisms. In this study, we introduce an electrochemical method to grow Pd clusters within the interlayers of two-dimensional black phosphorus, creating Pd cluster-intercalated black phosphorus (Pd-i-BP) as an electrocatalyst. Using in situ electrochemical liquid phase transmission electron microscopy (EC-TEM), we revealed the synthesis mechanism of Pd-i-BP, involving electrochemically driven Pd ion intercalation followed by reduction within the BP layers. The Pd-i-BP electrocatalyst exhibits exemplary CO2-to-formate conversion, achieving 90% Faradaic efficiency for formate production, owing to its distinct nanoconfined structure that stabilizes intermediates and enhances electron transfer. Density functional theory (DFT) calculations underscore the structural benefits for enhancing intermediate adsorption and catalyzing the reaction. Our insights deepen understanding of nanoconfined material synthesis, promising advanced, high-efficiency catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA