Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.122
Filtrar
Más filtros

Intervalo de año de publicación
1.
PLoS Pathog ; 20(6): e1012296, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38885278

RESUMEN

The obligate endosymbiont Wolbachia induces pathogen interference in the primary disease vector Aedes aegypti, facilitating the utilization of Wolbachia-based mosquito control for arbovirus prevention, particularly against dengue virus (DENV). However, the mechanisms underlying Wolbachia-mediated virus blockade have not been fully elucidated. Here, we report that Wolbachia activates the host cytoplasmic miRNA biogenesis pathway to suppress DENV infection. Through the suppression of the long noncoding RNA aae-lnc-2268 by Wolbachia wAlbB, aae-miR-34-3p, a miRNA upregulated by the Wolbachia strains wAlbB and wMelPop, promoted the expression of the antiviral effector defensin and cecropin genes through the Toll pathway regulator MyD88. Notably, anti-DENV resistance induced by Wolbachia can be further enhanced, with the potential to achieve complete virus blockade by increasing the expression of aae-miR-34-3p in Ae. aegypti. Furthermore, the downregulation of aae-miR-34-3p compromised Wolbachia-mediated virus blockade. These findings reveal a novel mechanism by which Wolbachia establishes crosstalk between the cytoplasmic miRNA pathway and the Toll pathway via aae-miR-34-3p to strengthen antiviral immune responses against DENV. Our results will aid in the advancement of Wolbachia for arbovirus control by enhancing its virus-blocking efficiency.


Asunto(s)
Aedes , Virus del Dengue , Dengue , MicroARNs , Wolbachia , Wolbachia/fisiología , Aedes/microbiología , Aedes/virología , Aedes/inmunología , Animales , MicroARNs/genética , MicroARNs/metabolismo , Virus del Dengue/inmunología , Dengue/inmunología , Dengue/virología , Receptores Toll-Like/metabolismo , Receptores Toll-Like/inmunología , Mosquitos Vectores/virología , Mosquitos Vectores/microbiología , Mosquitos Vectores/inmunología , Transducción de Señal , ARN Largo no Codificante/genética , ARN Largo no Codificante/inmunología , Inmunidad Innata , Simbiosis
2.
Brief Bioinform ; 24(5)2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37539835

RESUMEN

Enhancers are crucial cis-regulatory elements that control gene expression in a cell-type-specific manner. Despite extensive genetic and computational studies, accurately predicting enhancer activity in different cell types remains a challenge, and the grammar of enhancers is still poorly understood. Here, we present HEAP (high-resolution enhancer activity prediction), an explainable deep learning framework for predicting enhancers and exploring enhancer grammar. The framework includes three modules that use grammar-based reasoning for enhancer prediction. The algorithm can incorporate DNA sequences and epigenetic modifications to obtain better accuracy. We use a novel two-step multi-task learning method, task adaptive parameter sharing (TAPS), to efficiently predict enhancers in different cell types. We first train a shared model with all cell-type datasets. Then we adapt to specific tasks by adding several task-specific subset layers. Experiments demonstrate that HEAP outperforms published methods and showcases the effectiveness of the TAPS, especially for those with limited training samples. Notably, the explainable framework HEAP utilizes post-hoc interpretation to provide insights into the prediction mechanisms from three perspectives: data, model architecture and algorithm, leading to a better understanding of model decisions and enhancer grammar. To the best of our knowledge, HEAP will be a valuable tool for insight into the complex mechanisms of enhancer activity.


Asunto(s)
Aprendizaje Profundo , Elementos de Facilitación Genéticos , Algoritmos , Secuencia de Bases , Epigénesis Genética
3.
Crit Rev Immunol ; 44(5): 113-122, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38618733

RESUMEN

Pneumonia is a common infection in elderly patients. We explored the correlations of serum interleukin-6 (IL-6) and serum ferritin (SF) levels with immune function/disease severity in elderly pneumonia patients. Subjects were allocated into the mild pneumonia (MP), severe pneumonia (SP), and normal groups, with their age/sex/body mass index/ disease course and severity/blood pressure/comorbidities/medications/prealbumin (PA)/albumin (ALB)/C-reactive protein (CRP)/procalcitonin (PCT)/smoking status documented. The disease severity was evaluated by pneumonia severity index (PSI). T helper 17 (Th17)/regulatory T (Treg) cell ratios and IL-6/SF/immunoglobulin G (IgG)/Th17 cytokine (IL-21)/Treg cytokine (IL-10)/PA/ALB levels were assessed. The correlations between these indexes/independent risk factors in elderly patients with severe pneumonia were evaluated. There were differences in smoking and CRP/PCT/ALB/PA levels among the three groups, but only CRP/ALB were different between the MP/SP groups. Pneumonia patients exhibited up-regulated Th17 cell ratio and serum IL-6/SF/IL-21/IL-10/IgG levels, down-regulated Treg cell ratio, and greater differences were noted in severe cases. Serum IL-6/SF levels were positively correlated with disease severity, immune function, and IL-21/IL-10/IgG levels. Collectively, serum IL-6 and SF levels in elderly pneumonia patients were conspicuously positively correlated with disease severity and IL-21/IL-10/IgG levels. CRP, ALB, IL-6 and SF levels were independent risk factors for severe pneumonia in elderly patients.


Asunto(s)
Interleucina-10 , Interleucina-6 , Anciano , Humanos , Citocinas , Ferritinas , Inmunoglobulina G , Factores de Riesgo
4.
Mol Ther ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256999

RESUMEN

Cerebral reperfusion injury in stroke, stemming from interconnected thrombotic and inflammatory signatures, often involves platelet activation, aggregation and its interaction with various immune cells, contributing to microvascular dysfunction. However, the regulatory mechanisms behind this platelet activation and the resulting inflammation are not well understood, complicating the development of effective stroke therapies. Utilizing animal models and platelets from hemorrhagic stroke patients, our research demonstrates that human cerebral dopamine neurotrophic factor (CDNF) acts as an endogenous antagonist, mitigating platelet aggregation and associated neuroinflammation. CDNF moderates mitochondrial membrane potential, reactive oxygen species production, and intracellular calcium in activated platelets by interfering with GTP binding to Rap1b, thereby reducing Rap1b activation and downregulating the Rap1b-MAPK-PLA2 signaling pathway, which decreases release of the pro-inflammatory mediator thromboxane A2. In addition, CDNF reduces the inflammatory response in BV2 microglial cells co-cultured with activated platelets. Consistent with ex vivo findings, subcutaneous administration of CDNF in a rat model of ischemic stroke significantly reduces platelet activation, aggregation, lipid mediator production, infarct volume, and neurological deficits. In summary, our study highlights CDNF as a promising therapeutic target for mitigating platelet-induced inflammation and enhancing recovery in stroke. Harnessing the CDNF pathway may offer a novel therapeutic strategy for stroke intervention.

5.
Proc Natl Acad Sci U S A ; 119(26): e2122897119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35700355

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolves rapidly under the pressure of host immunity, as evidenced by waves of emerging variants despite effective vaccinations, highlighting the need for complementing antivirals. We report that targeting a pyrimidine synthesis enzyme restores inflammatory response and depletes the nucleotide pool to impede SARS-CoV-2 infection. SARS-CoV-2 deploys Nsp9 to activate carbamoyl-phosphate synthetase, aspartate transcarbamoylase, and dihydroorotase (CAD) that catalyzes the rate-limiting steps of the de novo pyrimidine synthesis. Activated CAD not only fuels de novo nucleotide synthesis but also deamidates RelA. While RelA deamidation shuts down NF-κB activation and subsequent inflammatory response, it up-regulates key glycolytic enzymes to promote aerobic glycolysis that provides metabolites for de novo nucleotide synthesis. A newly synthesized small-molecule inhibitor of CAD restores antiviral inflammatory response and depletes the pyrimidine pool, thus effectively impeding SARS-CoV-2 replication. Targeting an essential cellular metabolic enzyme thus offers an antiviral strategy that would be more refractory to SARS-CoV-2 genetic changes.


Asunto(s)
Antivirales , Aspartato Carbamoiltransferasa , Tratamiento Farmacológico de COVID-19 , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante) , Dihidroorotasa , Inhibidores Enzimáticos , Pirimidinas , SARS-CoV-2 , Replicación Viral , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Aspartato Carbamoiltransferasa/antagonistas & inhibidores , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/antagonistas & inhibidores , Dihidroorotasa/antagonistas & inhibidores , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Ratones , Pirimidinas/antagonistas & inhibidores , Pirimidinas/biosíntesis , Proteínas de Unión al ARN/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Factor de Transcripción ReIA/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
6.
Nano Lett ; 24(17): 5206-5213, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38647212

RESUMEN

Single Atoms Catalysts (SACs) have emerged as a class of highly promising heterogeneous catalysts, where the traditional bottom-up synthesis approaches often encounter considerable challenges in relation to aggregation issues and poor stability. Consequently, achieving densely dispersed atomic species in a reliable and efficient manner remains a key focus in the field. Herein, we report a new facile electrochemical knock-down strategy for the formation of SACs, whereby the metal Zn clusters are transformed into single atoms. While a defect-rich substrate plays a pivotal role in capturing and stabilizing isolated Zn atoms, the feasibility of this novel strategy is demonstrated through a comprehensive investigation, combining experimental and theoretical studies. Furthermore, when studied in exploring for potential applications, the material prepared shows a remarkable improvement of 58.21% for the Li+ storage and delivers a capacity over 300 Wh kg-1 after 500 cycles upon the transformation of Zn clusters into single atoms.

7.
J Mol Cell Cardiol ; 195: 55-67, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39089571

RESUMEN

Acute lung injury (ALI) including acute respiratory distress syndrome (ARDS) is a major complication and increase the mortality of patients with cardiac surgery. We previously found that the protein cargoes enriched in circulating extracellular vesicles (EVs) are closely associated with cardiopulmonary disease. We aimed to evaluate the implication of EVs on cardiac surgery-associated ALI/ARDS. The correlations between "oncoprotein-induced transcript 3 protein (OIT3) positive" circulating EVs and postoperative ARDS were assessed. The effects of OIT3-overexpressed EVs on the cardiopulmonary bypass (CPB) -induced ALI in vivo and inflammation of human bronchial epithelial cells (BEAS-2B) were detected. OIT3 enriched in circulating EVs is reduced after cardiac surgery with CPB, especially with postoperative ARDS. The "OIT3 positive" EVs negatively correlate with lung edema, hypoxemia and CPB time. The OIT3-overexpressed EVs can be absorbed by pulmonary epithelial cells and OIT3 transferred by EVs triggered K48- and K63-linked polyubiquitination to inactivate NOD-like receptor protein 3 (NLRP3) inflammasome, and restrains pro-inflammatory cytokines releasing and immune cells infiltration in lung tissues, contributing to the alleviation of CPB-induced ALI. Overexpression of OIT3 in human bronchial epithelial cells have similar results. OIT3 promotes the E3 ligase Cbl proto-oncogene B associated with NLRP3 to induce the ubiquitination of NLRP3. Immunofluorescence tests reveal that OIT3 is reduced in the generation from the liver sinusoids endothelial cells (LSECs) and secretion in liver-derived EVs after CPB. In conclusion, OIT3 enriched in EVs is a promising biomarker of postoperative ARDS and a therapeutic target for ALI after cardiac surgery.


Asunto(s)
Lesión Pulmonar Aguda , Vesículas Extracelulares , Proteína con Dominio Pirina 3 de la Familia NLR , Ubiquitinación , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Animales , Masculino , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Ratones , Inflamasomas/metabolismo , Proto-Oncogenes Mas , Puente Cardiopulmonar/efectos adversos , Células Epiteliales/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/etiología , Pulmón/metabolismo , Pulmón/patología , Péptidos y Proteínas de Señalización Intracelular
8.
J Am Chem Soc ; 146(36): 25035-25046, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39213649

RESUMEN

Graphene chemical vapor deposition (CVD) growth directly on target using substrates presents a significant route toward graphene applications. However, the substrates are usually catalytic-inert and special-shaped; thus, large-scale, high-uniformity, and high-quality graphene growth is challenging. Herein, graphene-skinned glass fiber fabric (GGFF) was developed through graphene CVD growth on glass fiber fabric, a Widely used engineering material. A fluid dynamics rectification strategy was first proposed to synergistically regulate the distribution of carbon species in 3D space and their collisions with hierarchical-structured substrates, through which highly uniform deposition of high-quality graphene on fibers in large-scale 3D-woven fabric was realized. This strategy is universal and applicable to CVD systems using various carbon precursors. GGFF exhibits high electrical conductivity and photothermal conversion capability, based on which a natural energy harvester was first developed. It can harvest both solar and raindrop energy through solar heating and droplet-based electricity generating, presenting promising potentials to alleviate energy burdens.

9.
J Am Chem Soc ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324666

RESUMEN

Functional molecules derived from stereogenic phosphorus centers have important applications in the discovery of drugs and agrochemicals. They are also widely utilized as chiral ligands or organocatalysts for diverse asymmetric transformations. However, access to P-stereogenic motifs has always been regarded as a highly challenging yet desirable goal in organic synthesis. The development of general and practical methods for the stereoselective construction of synthetically versatile P(III)-stereogenic phosphines is particularly appealing but remains elusive. Herein, we describe a nickel-catalyzed asymmetric alkylation of primary phosphines with alkyl halides for the synthesis of P-stereogenic secondary phosphine-boranes with high enantioselectivity and broad substrate scope. The resulting optically active secondary phosphine-boranes allow for further stereospecific transformations, thereby establishing a modular and efficient platform for the diversity-oriented construction of P-stereogenic phosphine compounds.

10.
Mol Cancer ; 23(1): 27, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297362

RESUMEN

BACKGROUND: Pancreatic cancer (PC) is an extremely malignant tumor with low survival rate. Effective biomarkers and therapeutic targets for PC are lacking. The roles of circular RNAs (circRNAs) in cancers have been explored in various studies, however more work is needed to understand the functional roles of specific circRNAs. In this study, we explore the specific role and mechanism of circ_0035435 (termed circCGNL1) in PC. METHODS: qRT-PCR analysis was performed to detect circCGNL1 expression, indicating circCGNL1 had low expression in PC cells and tissues. The function of circCGNL1 in PC progression was examined both in vitro and in vivo. circCGNL1-interacting proteins were identified by performing RNA pulldown, co-immunoprecipitation, GST-pulldown, and dual-luciferase reporter assays. RESULTS: Overexpressing circCGNL1 inhibited PC proliferation via promoting apoptosis. CircCGNL1 interacted with phosphatase nudix hydrolase 4 (NUDT4) to promote histone deacetylase 4 (HDAC4) dephosphorylation and subsequent HDAC4 nuclear translocation. Intranuclear HDAC4 mediated RUNX Family Transcription Factor 2 (RUNX2) deacetylation and thereby accelerating RUNX2 degradation. The transcription factor, RUNX2, inhibited guanidinoacetate N-methyltransferase (GAMT) expression. GAMT was further verified to induce PC cell apoptosis via AMPK-AKT-Bad signaling pathway. CONCLUSIONS: We discovered that circCGNL1 can interact with NUDT4 to enhance NUDT4-dependent HDAC4 dephosphorylation, subsequently activating HDAC4-RUNX2-GAMT-mediated apoptosis to suppress PC cell growth. These findings suggest new therapeutic targets for PC.


Asunto(s)
MicroARNs , Neoplasias Pancreáticas , Humanos , ARN Circular/genética , Guanidinoacetato N-Metiltransferasa , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Factores de Transcripción/genética , Neoplasias Pancreáticas/genética , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Apoptosis , MicroARNs/genética , Proliferación Celular , Línea Celular Tumoral , Proteínas Represoras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA