RESUMEN
CD8+ T cell exhaustion dampens antitumor immunity. Although several transcription factors have been identified that regulate T cell exhaustion, the molecular mechanisms by which CD8+ T cells are triggered to enter an exhausted state remain unclear. Here, we show that interleukin-2 (IL-2) acts as an environmental cue to induce CD8+ T cell exhaustion within tumor microenvironments. We find that a continuously high level of IL-2 leads to the persistent activation of STAT5 in CD8+ T cells, which in turn induces strong expression of tryptophan hydroxylase 1, thus catalyzing the conversion to tryptophan to 5-hydroxytryptophan (5-HTP). 5-HTP subsequently activates AhR nuclear translocation, causing a coordinated upregulation of inhibitory receptors and downregulation of cytokine and effector-molecule production, thereby rendering T cells dysfunctional in the tumor microenvironment. This molecular pathway is not only present in mouse tumor models but is also observed in people with cancer, identifying IL-2 as a novel inducer of T cell exhaustion.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Interleucina-2/metabolismo , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Neoplasias/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Microambiente Tumoral , 5-Hidroxitriptófano/metabolismo , Animales , Anticuerpos Neutralizantes/farmacología , Antineoplásicos/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HEK293 , Humanos , Interleucina-2/antagonistas & inhibidores , Interleucina-2/genética , Células Jurkat , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Células MCF-7 , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Células 3T3 NIH , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/patología , Receptores de Hidrocarburo de Aril/deficiencia , Receptores de Hidrocarburo de Aril/genética , Transducción de Señal , Triptófano Hidroxilasa/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Transient receptor potential (TRP) channels are a large, eukaryotic ion channel superfamily that control diverse physiological functions, and therefore are attractive drug targets1-5. More than 210 structures from more than 20 different TRP channels have been determined, and all are tetramers4. Despite this wealth of structures, many aspects concerning TRPV channels remain poorly understood, including the pore-dilation phenomenon, whereby prolonged activation leads to increased conductance, permeability to large ions and loss of rectification6,7. Here, we used high-speed atomic force microscopy (HS-AFM) to analyse membrane-embedded TRPV3 at the single-molecule level and discovered a pentameric state. HS-AFM dynamic imaging revealed transience and reversibility of the pentamer in dynamic equilibrium with the canonical tetramer through membrane diffusive protomer exchange. The pentamer population increased upon diphenylboronic anhydride (DPBA) addition, an agonist that has been shown to induce TRPV3 pore dilation. On the basis of these findings, we designed a protein production and data analysis pipeline that resulted in a cryogenic-electron microscopy structure of the TRPV3 pentamer, showing an enlarged pore compared to the tetramer. The slow kinetics to enter and exit the pentameric state, the increased pentamer formation upon DPBA addition and the enlarged pore indicate that the pentamer represents the structural correlate of pore dilation. We thus show membrane diffusive protomer exchange as an additional mechanism for structural changes and conformational variability. Overall, we provide structural evidence for a non-canonical pentameric TRP-channel assembly, laying the foundation for new directions in TRP channel research.
Asunto(s)
Multimerización de Proteína , Canales Catiónicos TRPV , Anhídridos/química , Anhídridos/farmacología , Análisis de Datos , Difusión , Subunidades de Proteína/química , Subunidades de Proteína/efectos de los fármacos , Subunidades de Proteína/metabolismo , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/efectos de los fármacos , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/ultraestructura , Microscopía de Fuerza Atómica , Terapia Molecular Dirigida , Microscopía por Crioelectrón , Estructura Cuaternaria de Proteína/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacosRESUMEN
The κ-opioid receptor (KOR) represents a highly desirable therapeutic target for treating not only pain but also addiction and affective disorders1. However, the development of KOR analgesics has been hindered by the associated hallucinogenic side effects2. The initiation of KOR signalling requires the Gi/o-family proteins including the conventional (Gi1, Gi2, Gi3, GoA and GoB) and nonconventional (Gz and Gg) subtypes. How hallucinogens exert their actions through KOR and how KOR determines G-protein subtype selectivity are not well understood. Here we determined the active-state structures of KOR in a complex with multiple G-protein heterotrimers-Gi1, GoA, Gz and Gg-using cryo-electron microscopy. The KOR-G-protein complexes are bound to hallucinogenic salvinorins or highly selective KOR agonists. Comparisons of these structures reveal molecular determinants critical for KOR-G-protein interactions as well as key elements governing Gi/o-family subtype selectivity and KOR ligand selectivity. Furthermore, the four G-protein subtypes display an intrinsically different binding affinity and allosteric activity on agonist binding at KOR. These results provide insights into the actions of opioids and G-protein-coupling specificity at KOR and establish a foundation to examine the therapeutic potential of pathway-selective agonists of KOR.
Asunto(s)
Microscopía por Crioelectrón , Proteínas de Unión al GTP Heterotriméricas , Ligandos , Receptores Opioides kappa , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacología , Receptores Opioides kappa/química , Receptores Opioides kappa/metabolismo , Receptores Opioides kappa/ultraestructura , Transducción de Señal , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Proteínas de Unión al GTP Heterotriméricas/ultraestructura , Especificidad por Sustrato , Regulación Alostérica/efectos de los fármacos , Alucinógenos/metabolismo , Alucinógenos/farmacologíaRESUMEN
The precise mechanisms that lead to cognitive decline in Alzheimer's disease are unknown. Here we identify amyloid-plaque-associated axonal spheroids as prominent contributors to neural network dysfunction. Using intravital calcium and voltage imaging, we show that a mouse model of Alzheimer's disease demonstrates severe disruption in long-range axonal connectivity. This disruption is caused by action-potential conduction blockades due to enlarging spheroids acting as electric current sinks in a size-dependent manner. Spheroid growth was associated with an age-dependent accumulation of large endolysosomal vesicles and was mechanistically linked with Pld3-a potential Alzheimer's-disease-associated risk gene1 that encodes a lysosomal protein2,3 that is highly enriched in axonal spheroids. Neuronal overexpression of Pld3 led to endolysosomal vesicle accumulation and spheroid enlargement, which worsened axonal conduction blockades. By contrast, Pld3 deletion reduced endolysosomal vesicle and spheroid size, leading to improved electrical conduction and neural network function. Thus, targeted modulation of endolysosomal biogenesis in neurons could potentially reverse axonal spheroid-induced neural circuit abnormalities in Alzheimer's disease, independent of amyloid removal.
Asunto(s)
Enfermedad de Alzheimer , Axones , Fosfolipasa D , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Axones/metabolismo , Axones/patología , Modelos Animales de Enfermedad , Fosfolipasa D/metabolismo , Esferoides Celulares/metabolismoRESUMEN
Gram-negative bacteria produce chaperone-usher pathway pili, which are extracellular protein fibers tipped with an adhesive protein that binds to a receptor with stereochemical specificity to determine host and tissue tropism. The outer-membrane usher protein, together with a periplasmic chaperone, assembles thousands of pilin subunits into a highly ordered pilus fiber. The tip adhesin in complex with its cognate chaperone activates the usher to allow extrusion across the outer membrane. The structural requirements to translocate the adhesin through the usher pore from the periplasm to the extracellular space remains incompletely understood. Here, we present a cryoelectron microscopy structure of a quaternary tip complex in the type 1 pilus system from Escherichia coli, which consists of the usher FimD, chaperone FimC, adhesin FimH, and the tip adapter FimF. In this structure, the usher FimD is caught in the act of secreting its cognate adhesin FimH. Comparison with previous structures depicting the adhesin either first entering or having completely exited the usher pore reveals remarkable structural plasticity of the two-domain adhesin during translocation. Moreover, a piliation assay demonstrated that the structural plasticity, enabled by a flexible linker between the two domains, is a prerequisite for adhesin translocation through the usher pore and thus pilus biogenesis. Overall, this study provides molecular details of adhesin translocation across the outer membrane and elucidates a unique conformational state adopted by the adhesin during stepwise secretion through the usher pore. This study elucidates fundamental aspects of FimH and usher dynamics critical in urinary tract infections and is leading to antibiotic-sparing therapeutics.
Asunto(s)
Adhesinas de Escherichia coli , Microscopía por Crioelectrón , Proteínas de Escherichia coli , Escherichia coli , Proteínas Fimbrias , Fimbrias Bacterianas , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/química , Fimbrias Bacterianas/metabolismo , Adhesinas de Escherichia coli/metabolismo , Adhesinas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Modelos Moleculares , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/químicaRESUMEN
The dynamic transcriptional regulation and interactions of human germlines and surrounding somatic cells during folliculogenesis remain unknown. Using RNA sequencing (RNA-seq) analysis of human oocytes and corresponding granulosa cells (GCs) spanning five follicular stages, we revealed unique features in transcriptional machinery, transcription factor networks, and reciprocal interactions in human oocytes and GCs that displayed developmental-stage-specific expression patterns. Notably, we identified specific gene signatures of two cell types in particular developmental stage that may reflect developmental competency and ovarian reserve. Additionally, we uncovered key pathways that may concert germline-somatic interactions and drive the transition of primordial-to-primary follicle, which represents follicle activation. Thus, our work provides key insights into the crucial features of the transcriptional regulation in the stepwise folliculogenesis and offers important clues for improving follicle recruitment in vivo and restoring fully competent oocytes in vitro.
Asunto(s)
Comunicación Celular/genética , Células de la Granulosa/fisiología , Oocitos/fisiología , Folículo Ovárico/fisiología , Reserva Ovárica/genética , Transcriptoma , Adulto , Animales , Biología Computacional , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Ratones , Folículo Ovárico/citología , Transducción de Señal/genética , Análisis de la Célula Individual , Especificidad de la Especie , Transcripción Genética , Adulto JovenRESUMEN
In neurodegenerative diseases, proteins fold into amyloid structures with distinct conformations (strains) that are characteristic of different diseases. However, there is a need to rapidly identify amyloid conformations in situ. Here, we use machine learning on the full information available in fluorescent excitation/emission spectra of amyloid-binding dyes to identify six distinct different conformational strains in vitro, as well as amyloid-ß (Aß) deposits in different transgenic mouse models. Our EMBER (excitation multiplexed bright emission recording) imaging method rapidly identifies conformational differences in Aß and tau deposits from Down syndrome, sporadic and familial Alzheimer's disease human brain slices. EMBER has in situ identified distinct conformational strains of tau inclusions in astrocytes, oligodendrocytes, and neurons from Pick's disease. In future studies, EMBER should enable high-throughput measurements of the fidelity of strain transmission in cellular and animal neurodegenerative diseases models, time course of amyloid strain propagation, and identification of pathogenic versus benign strains.
Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Pick , Ratones , Animales , Humanos , Microscopía , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Pick/metabolismo , Amiloide/metabolismo , Encéfalo/metabolismo , Ratones Transgénicos , Proteínas tau/metabolismo , Placa Amiloide/metabolismoRESUMEN
Implantation is a milestone event during mammalian embryogenesis. Implantation failure is a considerable cause of early pregnancy loss in humans1. Owing to the difficulty of obtaining human embryos early after implantation in vivo, it remains unclear how the gene regulatory network and epigenetic mechanisms control the implantation process. Here, by combining an in vitro culture system for the development human embryos after implantation and single-cell multi-omics sequencing technologies, more than 8,000 individual cells from 65 human peri-implantation embryos were systematically analysed. Unsupervised dimensionality reduction and clustering algorithms of the transcriptome data show stepwise implantation routes for the epiblast, primitive endoderm and trophectoderm lineages, suggesting robust preparation for the proper establishment of a mother-to-offspring connection during implantation. Female embryos showed initiation of random X chromosome inactivation based on analysis of parental allele-specific expression of X-chromosome-linked genes during implantation. Notably, using single-cell triple omics sequencing analysis, the re-methylation of the genome in cells from the primitive endoderm lineage was shown to be much slower than in cells of both epiblast and trophectoderm lineages during the implantation process, which indicates that there are distinct re-establishment features in the DNA methylome of the epiblast and primitive endoderm-even though both lineages are derived from the inner cell mass. Collectively, our work provides insights into the complex molecular mechanisms that regulate the implantation of human embryos, and helps to advance future efforts to understanding early embryonic development and reproductive medicine.
Asunto(s)
Metilación de ADN , Desarrollo Embrionario/genética , Epigenoma , Transcriptoma/genética , Linaje de la Célula/genética , Cromosomas Humanos X/genética , Variaciones en el Número de Copia de ADN/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , RNA-Seq , Análisis de la Célula Individual , Inactivación del Cromosoma X/genéticaRESUMEN
Breast cancer (BC) is a highly heterogeneous disease, and the presence of germline breast cancer gene mutation (gBRCAm) is associated with a poor prognosis. Triple-negative breast cancer (TNBC) is a BC subtype, characterized by the absence of hormone and growth factor receptor expression, making therapeutic decisions difficult. Defects in the DNA damage response pathway due to mutation in breast cancer genes (BRCA 1/2) lead to homologous recombination deficiency (HRD). However, in HRD conditions, poly (adenosine diphosphate-ribose) polymerase (PARP) proteins repair DNA damage and lead to tumor cell survival. Biological understanding of HRD leads to the development of PARP inhibitors (PARPi), which trap PARP proteins and cause genomic instability and tumor cell lysis. HRD assessment can be an important biomarker in identifying gBRCAm patients with BC who could benefit from PARPi therapy. HRD can be identified by homologous recombination repair (HRR) gene-based assays, genomic-scarring assays and mutational signatures, transcription and protein expression profiles, and functional assays. However, gold standard methodologies that are robust and reliable to assess HRD are not available currently. Hence, there is a pressing need to develop accurate biomarkers identifying HRD tumors to guide targeted therapies such as PARPi in patients with BC. HRD assessment has shown fruitful outcomes in chemotherapy studies and preliminary evidence on PARPi intervention as monotherapy and combination therapy in HRD-stratified patients. Furthermore, ongoing trials are exploring the potential of PARPi in BC and clinically complex TNBC settings, where HRD testing is used as an adjunct to stratify patients based on BRCA mutations.
Asunto(s)
Inhibidores de Poli(ADP-Ribosa) Polimerasas , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Femenino , Reparación del ADN por RecombinaciónRESUMEN
Organic-inorganic atomically precise nanoclusters provide indispensable building blocks for establishing structure-property links in hybrid condensed matter. However, robust glasses of ligand-protected nanocluster solids have yet to be demonstrated. Herein, we show [Cu4I4(PR3)4] cubane nanoclusters coordinated by phosphine ligands (PR3) form robust melt-quenched glasses in air with reversible crystal-liquid-glass transitions. Protective phosphine ligands critically influence the glass formation mechanism, modulating the glasses' physical properties. A hybrid glass utilizing ethyldiphenylphosphine-based nanoclusters, [Cu4I4(PPh2Et)4], exhibits superb optical properties, including >90% transmission in both visible and near-infrared wavelengths, negligible self-absorption, near-unity quantum yield, and high light yield. Experimental and theoretical analyses demonstrate the structural integrity of the [Cu4I4(PPh2Et)4] nanocluster, i.e., iodine-bridged tetranuclear cubane, has been fully preserved in the glass state. The strong internanocluster CH-π interactions found in the [Cu4I4(PPh2Et)4] glass and subsequently reduced structural vibration account for its enhanced luminescence properties. Moreover, this highly transparent glass enables performant X-ray imaging and low-loss waveguiding in fibers drawn above the glass transition. The discovery of "nanocluster glass" opens avenues for unraveling glass formation mechanisms and designing novel luminescent glasses of well-defined building blocks for advanced photonics.
RESUMEN
Copper nanoclusters (Cu NCs) characterized by their well-defined electronic and optical properties are an ideal platform for organic photocatalysis and exploring atomic-level behaviors. However, their potential as greener, efficient catalysts for challenging reactions like decarboxylative oxygenation under mild conditions remains unexplored. Herein, we present Cu13(Nap)3(PPh3)7H10 (hereafter Cu13Nap), protected by 1-naphthalene thiolate (Nap), which performs well in decarboxylative oxidation (90% yield) under photochemical conditions. In comparison, the isostructural Cu13(DCBT)3(PPh3)7H10 (hereafter Cu13DCBT), stabilized by 2,4-dichlorobenzenethiolate (DCBT), yields only 28%, and other previously reported Cu NCs (Cu28, Cu29, Cu45, Cu57, and Cu61) yield in the range of 6-18%. The introduction of naphthalene thiolate to the surface of Cu13 NCs influences their electronic structure and charge transfer in the ligand shell, enhancing visible light absorption and catalytic performance. Density functional theory (DFT) and experimental evidence suggest that the reaction proceeds primarily through an energy transfer mechanism. The energy transfer pathway is uncommon in the context of previous reports for decarboxylative oxidation reactions. Our findings suggest that strategically manipulating ligands holds significant potential for creating composite active sites on atomically precise copper NCs, resulting in enhanced catalytic efficacy and selectivity across various challenging reactions.
RESUMEN
Circularly polarized light-emitting diodes (CP-LEDs) are critical for next-generation optical technologies, ranging from holography to quantum information processing. Currently deployed chiral luminescent materials, with their intricate synthesis and processing and limited efficiency, are the main bottleneck for CP-LEDs. Chiral metal nanoclusters (MNCs) are potential CP-LED materials, given their ease of synthesis and processability as well as diverse structures and excited states. However, their films are usually plagued by inferior electronic quality and aggregation-caused photoluminescence quenching, necessitating their incorporation into host materials; without such a scheme, MNC-based LEDs exhibit external quantum efficiencies (EQEs) < 10%. Herein, we achieve an efficiency leap for both CP-LEDs and cluster-based LEDs by using novel chiral MNCs with aggregation-induced emission enhancement. CP-LEDs using enantiopure MNC films attain EQEs of up to 23.5%. Furthermore, by incorporating host materials, the devices yield record EQEs of up to 36.5% for both CP-LEDs and cluster-based LEDs, along with electroluminescence dissymmetry factors (|gEL|) of around 1.0 × 10-3. These findings open a new avenue for advancing chiral light sources for next-generation optoelectronics.
RESUMEN
BACKGROUND: Oral squamous cell carcinoma (OSCC), the predominant malignancy of the oral cavity, is characterized by high incidence and low survival rates. Emerging evidence suggests a link between circadian rhythm disruptions and cancer development. The circadian gene TIMELESS, known for its specific expression in various tumors, has not been extensively studied in the context of OSCC. This study aims to explore the influence of TIMELESS on OSCC, focusing on cell growth and metabolic alterations. METHODS: We analyzed TIMELESS expression in OSCC using western blot, immunohistochemistry, qRT-PCR, and data from The Cancer Genome Atlas (TCGA) and the Cancer Cell Line Encyclopedia (CCLE). The role of TIMELESS in OSCC was examined through clone formation, MTS, cell cycle, and EdU assays, alongside subcutaneous tumor growth experiments in nude mice. We also assessed the metabolic impact of TIMELESS by measuring glucose uptake, lactate production, oxygen consumption, and medium pH, and investigated its effect on key metabolic proteins including silent information regulator 1 (SIRT1), hexokinase 2 (HK2), pyruvate kinase isozyme type M2 (PKM2), recombinant lactate dehydrogenase A (LDHA) and glucose transporter-1 (GLUT1). RESULTS: Elevated TIMELESS expression in OSCC tissues and cell lines was observed, correlating with reduced patient survival. TIMELESS overexpression enhanced OSCC cell proliferation, increased glycolytic activity (glucose uptake and lactate production), and suppressed oxidative phosphorylation (evidenced by reduced oxygen consumption and altered pH levels). Conversely, TIMELESS knockdown inhibited these cellular and metabolic processes, an effect mirrored by manipulating SIRT1 levels. Additionally, SIRT1 was positively associated with TIMELESS expression. The expression of SIRT1, HK2, PKM2, LDHA and GLUT1 increased with the overexpression of TIMELESS levels and decreased with the knockdown of TIMELESS. CONCLUSION: TIMELESS exacerbates OSCC progression by modulating cellular proliferation and metabolic pathways, specifically by enhancing glycolysis and reducing oxidative phosphorylation, largely mediated through the SIRT1 pathway. This highlights TIMELESS as a potential target for OSCC therapeutic strategies.
Asunto(s)
Péptidos y Proteínas de Señalización del Ritmo Circadiano , Glucosa , Neoplasias de la Boca , Carcinoma de Células Escamosas de Cabeza y Cuello , Animales , Humanos , Ratones , Línea Celular Tumoral , Proliferación Celular/genética , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1 , Lactatos , Ratones Desnudos , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Sirtuina 1/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genéticaRESUMEN
Quasi-parametric amplification (QPA), a variant of optical parametric amplification, can release the phase-matching requirement owing to the introduction of idler dissipation, and thus may support ultrabroad bandwidth. Here we establish the gain-dispersion equation for QPA, which reveals the interplay of signal gain, idler dissipation and phase mismatch. The idler dissipation dramatically enhances the gain bandwidth, which breaks the limit set by phase matching. We theoretically demonstrate that QPA with strong dissipation allows high-efficiency few-cycle pulse amplification in those nonlinear crystals without a magic phase-matching solution.
RESUMEN
BACKGROUND: Inetetamab is the first domestically developed innovative anti-HER2 monoclonal antibody in China, proven effective and safe in HER2-positive advanced breast cancer. However, its efficacy and safety in neoadjuvant treatment of HER2-positive locally advanced breast cancer (LABC) remain to be validated. METHODS: This prospective cohort study aimed to evaluate the efficacy and safety of inetetamab combined with pertuzumab, taxanes, and carboplatin (TCbIP) in neoadjuvant therapy for HER2-positive LABC, comparing it to data from patients treated with the TCbHP regimen (trastuzumab combined with pertuzumab, taxanes, and carboplatin) using propensity score matching (PSM). The primary endpoint was total pathological complete response (tpCR). Adverse events (AEs), objective response rate (ORR), and near-pCR were key secondary endpoints. RESULTS: Forty-four patients with clinical stage IIA-IIIC HER2-positive LABC were prospectively enrolled and treated with the TCbIP regimen. The tpCR rate among 28 patients who completed surgery was 60.7%, comparable to and slightly higher than the TCbHP group in PSM (60.7% vs. 53.6%, P = 0.510). The ORR was 96.4%, and the DCR reached 100.0%. The most common ≥ grade 3 AE was neutropenia (21.4% vs. 11.9%, P = 0.350). No significant reduction in left ventricular ejection fraction was observed, and no patient withdrew from treatment due to AEs. CONCLUSION: Neoadjuvant therapy with TCbIP showed good efficacy and safety in patients with HER2-positive LABC and might be another promising option for neoadjuvant treatment. TRIAL REGISTRATION: NCT05749016 (registration date: Nov 01, 2021).
Asunto(s)
Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias de la Mama , Carboplatino , Terapia Neoadyuvante , Puntaje de Propensión , Receptor ErbB-2 , Taxoides , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Carboplatino/administración & dosificación , Carboplatino/uso terapéutico , Persona de Mediana Edad , Terapia Neoadyuvante/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Estudios Prospectivos , Adulto , Receptor ErbB-2/metabolismo , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/administración & dosificación , Taxoides/administración & dosificación , Taxoides/uso terapéutico , Anciano , Trastuzumab/uso terapéutico , Trastuzumab/administración & dosificación , Resultado del TratamientoRESUMEN
Autoimmunity plays a key role in the pathogenesis of Alzheimer's disease (AD). However, whether autoantibodies in peripheral blood can be used as biomarkers for AD has been elusive. Serum samples were obtained from 1,686 participants, including 767 with AD, 146 with mild cognitive impairment (MCI), 255 with other neurodegenerative diseases, and 518 healthy controls. Specific autoantibodies were measured using a custom-made immunoassay. Multivariate support vector machine models were employed to investigate the correlation between serum autoantibody levels and disease states. As a result, seven candidate AD-specific autoantibodies were identified, including MAPT, DNAJC8, KDM4D, SERF1A, CDKN1A, AGER, and ASXL1. A classification model with high accuracy (area under the curve (AUC) = 0.94) was established. Importantly, these autoantibodies could distinguish AD from other neurodegenerative diseases and out-performed amyloid and tau protein concentrations in cerebrospinal fluid in predicting cognitive decline (P < 0.001). This study indicated that AD onset and progression are possibly accompanied by an unappreciated serum autoantibody response. Therefore, future studies could optimize its application as a convenient biomarker for the early detection of AD.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico , Proteínas tau/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores , Disfunción Cognitiva/diagnóstico , Autoanticuerpos , Progresión de la Enfermedad , Fragmentos de Péptidos/líquido cefalorraquídeo , Histona Demetilasas con Dominio de Jumonji , Proteínas del Tejido NerviosoRESUMEN
OBJECTIVES: To investigate the safety and efficacy of indocyanine green (ICG) fluorescence-guided inguinal lymph node dissection (ILND) in patients with penile cancer. PATIENTS AND METHODS: A prospective, single-blind, randomised controlled clinical trial (ChiCTR2100044584) was performed among patients with penile caner who underwent bilateral modified ILND at four centres in China between 1 April 2021 and 30 June 2022. Patients aged 18-80 years and diagnosed with squamous cell carcinomas were included. Each enrolled patient was randomly assigned to either ICG fluorescence-guided ILND by a laparoscopic or robot-assisted approach in one groin, with non-ICG fluorescence-guided ILND in the other groin acting as a control. The primary outcome was the number of retrieved ILNs. Secondary outcomes included complications according to the Clavien-Dindo classification and the ILN non-compliance (inadequate removal of ILNs) rate. RESULTS: A total of 45 patients were included in the intention-to-treat (ITT) analysis, and the 42 who completed the entire study were included in the per protocol (PP) analysis. There were no ICG-related complications in any of the patients. The results of the ITT and PP analyses indicated that the total number of unilateral ILNs retrieved was higher on the ICG side than on the non-ICG side (mean 13 vs 9 ILNs, difference 4 ILNs [95% CI 2.7-4.4], P = 0.007), and the number of unilateral deep and superficial ILNs was higher on the ICG side. Furthermore, the LN non-compliance rate was lower on the ICG side than on the non-ICG side. Additionally, there was no significant difference in local complications in the groins between the two sides (P > 0.05). CONCLUSION: An ICG fluorescence-guided ILND was safe for patients with penile cancer. This procedure can improve the number of ILNs retrieved and reduce the LN non-compliance rate without increased complications. ICG fluorescence-guided ILND is beneficial and recommended for selected patients with penile cancer.
Asunto(s)
Verde de Indocianina , Neoplasias del Pene , Masculino , Humanos , Neoplasias del Pene/cirugía , Neoplasias del Pene/patología , Estudios Prospectivos , Método Simple Ciego , Escisión del Ganglio Linfático/métodos , Ganglios Linfáticos/patología , Biopsia del Ganglio Linfático CentinelaRESUMEN
Stable magnetic core-shell nanostructures are developed by lattice locking lanthanide-iron (La-Fe) oxide shells with magnetite cores to prevent the release of La from the surfaces of the magnetite nanostructures. The resulting core-shell nanostructures demonstrate excellent outstanding regeneration performance and high adsorption capacity for phosphate (115 mg P·g-1). These nanostructures release minimal La from the magnetite core surfaces after adsorbent regeneration, with a La loss of only 20% compared to the control sample, Mag@La(OH)3. La3+ ions were released at concentrations ranging from 1 to 2.3 µg·L-1 at pH levels of 4 to 8, which is within the metal content range found in natural aquatic environments. These results demonstrate the high stability of the nanostructures after regeneration. Furthermore, the adsorbent exhibits high extraction capacity across a wide pH range of 4 to 10 and performs well even in the presence of interfering anions at phosphate-to-anion molar ratios of 1:5, 1:25, and 1:100. Microscopic and spectroscopic analyses reveal that the primary extraction mechanism of phosphate in the La-containing shells is surface precipitation. This approach not only improves the use of magnetic core-shell nanostructures as adsorbents but also demonstrates the creation of a broad range of stable magnetic functional materials for diverse applications.
RESUMEN
Two new compounds namely [Zn(L1)phen]31 and Ni(L1)phen(MeOH) 2 (L1 = 3, 5-dichlorosalicylaldehyde thiosemicarbazone) were synthesized by the slow evaporation method at room temperature. The structure of ligand L1 was determined using 1H NMR and 13C NMR spectra. X-ray single crystal diffraction analysis revealed that compounds 1-2 can form 3D supramolecular network structures through π···π stacking and hydrogen bonding interactions. The DFT calculation shows that the coordination of ligand and metal is in good agreement with the experimental results. Hirshfeld surface analysis revealed that H H and Cl H interactions were the predominant interactions in compounds 1-2. Energy framework analysis indicated that dispersion energy played a dominant role in the energy composition of compounds 1-2. The inhibitory effects of compounds 1-2 against Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA) were tested using the paper disk diffusion method (1: E. coli: 18 mm, MRSA: 17 mm, 2: E. coli: 15 mm, MRSA: 16 mm). Ion releasing experiments were conducted to assess the ion release capacity of compounds 1-2 (Zn2+, 4 days, 38.33 µg/mL; Ni2+, 4 days, 29.12 µg/mL). Molecular docking demonstrated the interaction modes of compounds 1-2 with UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) and dihydrofolate reductase (DHFR) in bacteria, involving hydrophobic, stacking, hydrogen bonding and halogen bonding interactions. The generation of reactive oxygen species (ROS) in bacteria under the presence of compounds 1-2 were evaluated using a fluorescent dye known as dichlorodihydrofluorescein diacetate (DCFH-DA). Potential antibacterial mechanisms of compounds 1-2 were proposed.
Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Escherichia coli , Ligandos , Simulación del Acoplamiento Molecular , Zinc/farmacología , Zinc/química , Níquel/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacologíaRESUMEN
BACKGROUND: Although video-assisted thoracoscopic surgery (VATS) has advantages of reduced injury and faster healing, patients still endure moderate and severe postoperative pain. Paracetamol and mannitol injection, the first acetaminophen injection in China, has the advantages of convenient administration, rapid onset of action, and no first-pass effect. This aim of this study was to investigate the efficacy of postoperative analgesia with paracetamol and mannitol injection, combined with thoracic paravertebral nerve block (TPVB) in post VATS pain. METHODS: This study was a single-center, prospective, randomized, double-blind controlled clinical trial. Patients scheduled for VATS were randomly divided into three groups, general anesthesia group (Group C), TPVB group (Group T) and TPVB + paracetamol and mannitol injection group (Group TP). In this study, the primary outcome was determined as visual analog scale (VAS) scores at rest and coughing, the secondary observation outcomes were the first time to use analgesic pump, the total consumption of oxycodone in the analgesic pump, number of effective and total analgesic pump compressions at first 48 h postoperatively, the perioperative consumption of sufentanil, time to extubation, hospital length of stay, urine volume, and the incidence of adverse events. RESULTS: In a state of rest and cough, patients in the Group TP showed significantly lower VAS pain scores at 1, 12, 24, and 48 postoperative-hour compared with Group C and Group T. Intraoperative sufentanil and postoperative oxycodone consumption, the first time to press analgesic pump, the times of effective and total compressions of patient- controlled analgesia (PCA) were lower than those of the Group C and Group T. Interestingly, urine output was higher in Group TP. There were no differences between the three groups in terms of extubation time, length of hospital stay and adverse effects, indicating that intravenous paracetamol and mannitol injection is an effective and safe perioperative analgesia method. CONCLUSIONS: Paracetamol and mannitol injection, combined with TPVB may provide important beneficial effects on acute pain control and reduce the consumption of opioid in patients undergoing VATS. TRIAL REGISTRATION: The trial was registered on Jun 19, 2023 in the Chinese Clinical Trial Registry ( https://www.chictr.org.cn/showproj.html?proj=199315 ), registration number ChiCTR2300072623 (19/06/2023).