Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
ScientificWorldJournal ; 2013: 463891, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24298219

RESUMEN

This paper presents the analysis and numerical results of rotation, propagation angle, and attenuation angle upon the waves propagating in the piezoelectric body. Via considering the centripetal and Coriolis accelerations in the piezoelectric equations with respect to a rotating frame of reference, wave velocities and attenuations are derived and plotted graphically. It is demonstrated that rotation speed vector can affect wave velocities and make the piezoelectric body behaves as if it was damping. Besides, the effects of propagation angle and attenuation angle are presented. Critical point is found when rotation speed is equal to wave frequency, around which wave characteristics change drastically.


Asunto(s)
Rotación , Sonido , Aceleración , Modelos Teóricos , Electricidad Estática
2.
Materials (Basel) ; 16(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37834581

RESUMEN

Sheet metals usually experience various loading paths such as uniaxial tension, uniaxial compression, biaxial tension, and simple shear during the forming process. However, the existing constitutive models cannot always accurately describe blanks' anisotropic yield and plastic flow behavior of blanks under all typical stress states. Given this, this paper improves the Eyld2000-2d yield criterion by introducing hydrostatic pressure to the A-Eyld2000-2d yield criterion that can describe the strength differential effect of materials. Meanwhile, to control the curvature of the yield surface more effectively, the near-plane strain yield stresses were added in the parameter identification process to calibrate the exponent m, so that the exponent is no longer considered as a constant value. Taking the widely used AA6016-T4, AA5754-O, DP980, and QP980 blanks in the automotive stamping industry as an example, the effectiveness of the new model and different parameter identification methods was verified by predicting experimental data under various simple and complex loading paths. Subsequently, the new model employing the optimal parameter identification strategy was compared with four widely used asymmetric yield criteria under associated and non-associated flow rules, including CPB06, LHY2013, S-Y2004, and Hu & Yoon2021, to further verify the accuracy of the proposed constitutive model. The results indicate that parameter identification strategy with variable exponent can significantly improve the flexibility of the yield criterion in describing the plastic anisotropy of blanks. Compared to the other yield criteria examined in this work, the new model provides the best prediction accuracy for the yield stresses and plastic flows of all blanks, especially in the near-plane strain and simple shear stress states. Modeling under the concept of anisotropic hardening can more accurately capture the evolving plastic behavior of blanks than isotropic hardening.

3.
Materials (Basel) ; 15(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35408029

RESUMEN

The flow stress behavior and corrosive properties of Al-7Si alloy were studied by thermal compression test, electrochemical test, and electron probe microanalysis. The influences of temperatures, strain rates, strains, and morphology of Si particles on stress-strain curves of Al-7Si alloy were analyzed. The peak stress of unmodified-Al-7Si alloy is higher than that of Sr-modified-Al-7Si alloy at the same deformation conditions, and the phenomenon is obviously relevant to the distribution and morphology of Si particles. The morphology of Si particles of unmodified-undeformed-Al-7Si alloy is a typical thick layer, and that of unmodified-deformed-Al-7Si alloy is broken into relatively small particles and the distribution is relatively even in homogeneous deformation zone II. The distribution of Si particles in Sr-modified-deformed-Al-7Si alloy is obviously more even than undeformed alloy. The effect of a small deformation of 20% on the distribution and morphology of Si particles is obviously smaller than that of a large deformation of 50%. The electrochemical self-corrosion potential of Sr-modified-Al-7Si alloy is higher than that of unmodified-Al-7Si alloy, and it proves that the distribution and morphology of Si particles have a certain influence on the corrosive properties of Al-7Si alloy. That is, the even fine Si particles are more conducive to improving the corrosive properties of Al-7Si alloy.

4.
Materials (Basel) ; 15(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35208161

RESUMEN

In this paper, the effect of temperature on the corrosion behavior and corrosion resistance of the copper-aluminum laminated composite plates were investigated by salt-spray corrosion, potential polarization curve and electrochemical impedance spectroscopy. Moreover, the microstructure of the copper-aluminum laminated composite plate after salt-spray corrosion was observed by scanning electron microscope, and X-ray photoelectron spectroscopy was used to study the composition of corrosion product. The results revealed that the corrosion products of the copper-aluminum laminated composite plate were Al2O3 and AlOOH. Due to the galvanic corrosion of the copper-aluminum laminated composite plate, the cathode underwent oxygen absorption corrosion during the corrosion process; therefore, the presence of moisture and the amount of dissolved oxygen in the corrosive environment had a great influence on the corrosion process. The increasing temperature would evaporate a large amount of moisture, resulting in the corrosion product-aluminum oxide dehydrated and covered the surface of the material in the process of salt-spray corrosion, which played a role in protecting the material. Therefore, the corrosion resistance of the copper-aluminum laminated composite plate first decreased and then increased. In the salt-spray corrosion environment, the corrosion resistance of the copper-aluminum laminated composite plate reached the lowest at 45 °C, and its corrosion rate was the fastest, at 0.728 g/m2·h. The electrochemical corrosion occurred in the solution, and the impact was small; however, in addition to the protective corrosion products, the ion mobility in the solution also had a certain influence on the corrosion rate, and the ionic activity increased with the increase of temperature. Therefore, the corrosion resistance of the copper-aluminum laminated composite plate gradually decreased as the temperature increased, and its corrosion resistance was the worst at 50 °C.

5.
Materials (Basel) ; 14(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34683778

RESUMEN

The hot deformation behavior and processing maps of the casting NiTi alloy were studied at the deformation temperature of 650-1050 °C and the strain rate of 5 × 10-3-1 s-1 by Gleeble-3800 thermal simulating tester. The variation of the strain rate sensitivity exponent m and the activation energy Q under different deformation conditions (T = 650-1050 °C, ε˙ = 0.005-1 s-1) were obtained. The formability of the NiTi alloy was the best from 800 °C to 950 °C. The constitutive equation of the casting NiTi alloy was constructed by the Arrhenius model. The processing map of the casting NiTi alloy was plotted according to the dynamic material model (DMM) based on the Prasad instability criterion. The optimal processing areas were at 800-950 °C and 0.005-0.05 s-1. The microstructure of the casting NiTi alloy was analyzed by TEM, SEM and EBSD. The softening mechanisms of the casting NiTi alloy were mainly dynamic recrystallization of the Ti2Ni phase and the nucleation and growth of fine martensite.

6.
Materials (Basel) ; 14(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34443282

RESUMEN

Toughness of the coarse-grained-heat-affected-zone (CGHAZ) strongly depends on the prior austenite grain size. The prior austenite grain size is affected not only by chemical composition, thermal cycle, and dissolution of second-phase particles, but also by the initial microstructure. The effect of base metal microstructure (ferrite/pearlite obtained by air cooling and martensite obtained by water-quenching) on Charpy impact toughness of the CGHAZ has been investigated for different heat inputs for high-heat input welding of a microalloyed steel. A welding thermal cycle with a heat input of 100 kJ/cm and 400 kJ/cm were simulated on the MMS-300 system. Despite a similar microstructure in the CGHAZ of both the base metals, the average Charpy impact energy for the air-cooled base metal was found to be higher than the water-quenched base metal. Through thermo-kinetic simulations, it was found that a higher enrichment of Mn/C at the ferrite/austenite transformation interface of the CGHAZ of water-quenched base metal resulted in stabilizing austenite at a lower A1 temperature, which resulted in a coarser austenite grain size and eventually lowering the toughness of the CGHAZ.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA