Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Molecules ; 28(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36771083

RESUMEN

When creating titanium-containing bone implants, the bioactive coatings that promote their rapid engraftment are important. The engraftment rate of titanium implants with bone tissue depends significantly on the modification of the implant surface. It is achieved by changing either the relief or the chemical composition of the surface layer, as well as a combination of these two factors. In this work, we studied the creation of composite coatings with a two-level (the micro- and nanolevel) hierarchy of the surface relief, which have bioactive and bactericidal properties, which are promising for bone implantation. Using the developed non-lithographic template electrochemical synthesis, a composite coating on titanium with a controlled surface structure was created based on an island-type TiO2 film, silver and hydroxyapatite (HAp). This TiO2/Ag/HAp composite coating has a developed surface relief at the micro- and nanolevels and has a significant cytological response and the ability to accelerate osteosynthesis, and also has an antibacterial effect. Thus, the developed biomaterial is suitable for production of dental and orthopedic implants with improved biomedical properties.


Asunto(s)
Materiales Biocompatibles Revestidos , Titanio , Titanio/farmacología , Titanio/química , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química , Huesos , Antibacterianos/farmacología , Antibacterianos/química , Durapatita/farmacología , Durapatita/química , Propiedades de Superficie
2.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36232854

RESUMEN

Herein, we report that chromone-containing allylmorpholines can affect ion channels formed by pore-forming antibiotics in model lipid membranes, which correlates with their ability to influence membrane boundary potential and lipid-packing stress. At 100 µg/mL, allylmorpholines 1, 6, 7, and 8 decrease the boundary potential of the bilayers composed of palmitoyloleoylphosphocholine (POPC) by about 100 mV. At the same time, the compounds do not affect the zeta-potential of POPC liposomes, but reduce the membrane dipole potential by 80-120 mV. The allylmorpholine-induced drop in the dipole potential produce 10-30% enhancement in the conductance of gramicidin A channels. Chromone-containing allylmorpholines also affect the thermotropic behavior of dipalmytoylphosphocholine (DPPC), abolishing the pretransition, lowering melting cooperativity, and turning the main phase transition peak into a multicomponent profile. Compounds 4, 6, 7, and 8 are able to decrease DPPC's melting temperature by about 0.5-1.9 °C. Moreover, derivative 7 is shown to increase the temperature of transition of palmitoyloleoylphosphoethanolamine from lamellar to inverted hexagonal phase. The effects on lipid-phase transitions are attributed to the changes in the spontaneous curvature stress. Alterations in lipid packing induced by allylmorpholines are believed to potentiate the pore-forming ability of amphotericin B and gramicidin A by several times.


Asunto(s)
Gramicidina , Membrana Dobles de Lípidos , Anfotericina B , Antibacterianos , Cromonas/farmacología , Gramicidina/metabolismo , Gramicidina/farmacología , Canales Iónicos , Liposomas
3.
Molecules ; 25(22)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198321

RESUMEN

Secretome of multipotent mesenchymal stromal cells (MSCs) is actively used in biomedical applications such as alveolar bone regeneration, treatment of cardiovascular disease, and neurodegenerative disorders. Nevertheless, hMSCs have low proliferative potential and production of the industrial quantity of their secretome might be challenging. Human fetal multipotent mesenchymal stromal cells (FetMSCs) isolated from early human embryo bone marrow are easy to expand and might be a potential source for pharmaceutical substances production based on their secretome. However, the secretome of FetMSCs was not previously analyzed. Here, we describe the secretome of FetMSCs using LC-MALDI shotgun proteomics. We identified 236 proteins. Functional annotation of the identified proteins revealed their involvement in angiogenesis, ossification, regulation of apoptosis, and immune response processes, which made it promising for biomedical applications. The proteins identified in the FetMSCs secretome are involved in the same biological processes as proteins from previously described adult hMSCs secretomes. Nevertheless, many of the common hMSCs secretome components (such as VEGF, FGF, Wnt and TGF-ß) have not been identified in the FetMSCs secretome.


Asunto(s)
Perfilación de la Expresión Génica , Células Madre Mesenquimatosas/metabolismo , Proteoma/metabolismo , Médula Ósea/metabolismo , Células de la Médula Ósea/metabolismo , Diferenciación Celular , Proliferación Celular , Cromatografía Liquida , Biología Computacional , Medios de Cultivo Condicionados , Humanos , Proteómica , Medicina Regenerativa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem
4.
Sci Rep ; 14(1): 4495, 2024 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402260

RESUMEN

Extrapulmonary tuberculosis with a renal involvement can be a manifestation of a disseminated infection that requires therapeutic intervention, particularly with a decrease in efficacy of conventional regimens. In the present study, we investigated the therapeutic potency of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) in the complex anti-tuberculosis treatment (ATT). A rabbit model of renal tuberculosis (rTB) was constructed by injecting of the standard strain Mycobacterium tuberculosis H37Rv into the cortical layer of the kidney parenchyma. Isolated rabbit MSC-EVs were intravenously administered once as an addition to standard ATT (isoniazid, pyrazinamide, and ethambutol). The therapeutic efficacy was assessed by analyzing changes of blood biochemical biomarkers and levels of anti- and pro-inflammatory cytokines as well as by renal computed tomography with subsequent histological and morphometric examination. The therapeutic effect of therapy with MSC-EVs was shown by ELISA method that confirmed a statistically significant increase of the anti-inflammatory and decrease of pro-inflammatory cytokines as compared to conventional treatment. In addition, there is a positive trend in increase of ALP level, animal weigh, and normalization of ADA activity that can indicate an improvement of kidney state. A significant reduction of the area of specific and interstitial inflammation indicated positive affect of MSC-EVs that suggests a shorter duration of ATT. The number of MSC-EVs proteins (as identified by mass-spectometry analysis) with anti-microbial, anti-inflammatory and immunoregulatory functions reduced the level of the inflammatory response and the severity of kidney damage (further proved by morphometric analysis). In conclusion, MSC-EVs can be a promising tool for the complex treatment of various infectious diseases, in particularly rTB.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Tuberculosis Renal , Animales , Conejos , Tuberculosis Renal/metabolismo , Vesículas Extracelulares/metabolismo , Citocinas/metabolismo , Antiinflamatorios/uso terapéutico , Antiinflamatorios/metabolismo , Células Madre Mesenquimatosas/metabolismo
5.
Exploration (Beijing) ; 3(4): 20210111, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37933241

RESUMEN

In the biomedical and pharmaceutical fields, cyclodextrin (CD) is undoubtedly one of the most frequently used macrocyclic compounds as the host molecule because it has good biocompatibility and can increase the solubility, bioavailability, and stability of hydrophobic drug guests. In this review, we generalized the unique properties of CDs, CD-related supramolecular nanocarriers, supramolecular controlled release systems, and targeting systems based on CDs, and introduced the paradigms of these nanomedicines. In addition, we also discussed the prospects and challenges of CD-based supramolecular nanomedicines to facilitate the development and clinical translation of these nanomedicines.

6.
Nanomaterials (Basel) ; 13(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37049234

RESUMEN

Over the past several decades, nanocarriers have demonstrated diagnostic and therapeutic (i.e., theranostic) potencies in translational oncology, and some agents have been further translated into clinical trials. However, the practical application of nanoparticle-based medicine in living organisms is limited by physiological barriers (blood-tissue barriers), which significantly hampers the transport of nanoparticles from the blood into the tumor tissue. This review focuses on several approaches that facilitate the translocation of nanoparticles across blood-tissue barriers (BTBs) to efficiently accumulate in the tumor. To overcome the challenge of BTBs, several methods have been proposed, including the functionalization of particle surfaces with cell-penetrating peptides (e.g., TAT, SynB1, penetratin, R8, RGD, angiopep-2), which increases the passing of particles across tissue barriers. Another promising strategy could be based either on the application of various chemical agents (e.g., efflux pump inhibitors, disruptors of tight junctions, etc.) or physical methods (e.g., magnetic field, electroporation, photoacoustic cavitation, etc.), which have been shown to further increase the permeability of barriers.

7.
Biosensors (Basel) ; 13(6)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37366989

RESUMEN

Type I interferons, particularly IFNα-2b, play essential roles in eliciting adaptive and innate immune responses, being implicated in the pathogenesis of various diseases, including cancer, and autoimmune and infectious diseases. Therefore, the development of a highly sensitive platform for analysis of either IFNα-2b or anti-IFNα-2b antibodies is of high importance to improve the diagnosis of various pathologies associated with the IFNα-2b disbalance. For evaluation of the anti-IFNα-2b antibody level, we have synthesized superparamagnetic iron oxide nanoparticles (SPIONs) coupled with the recombinant human IFNα-2b protein (SPIONs@IFNα-2b). Employing a magnetic relaxation switching assay (MRSw)-based nanosensor, we detected picomolar concentrations (0.36 pg/mL) of anti-INFα-2b antibodies. The high sensitivity of the real-time antibodies' detection was ensured by the specificity of immune responses and the maintenance of resonance conditions for water spins by choosing a high-frequency filling of short radio-frequency pulses of the generator. The formation of a complex of the SPIONs@IFNα-2b nanoparticles with the anti-INFα-2b antibodies led to a cascade process of the formation of nanoparticle clusters, which was further enhanced by exposure to a strong (7.1 T) homogenous magnetic field. Obtained magnetic conjugates exhibited high negative MR contrast-enhancing properties (as shown by NMR studies) that were also preserved when particles were administered in vivo. Thus, we observed a 1.2-fold decrease of the T2 relaxation time in the liver following administration of magnetic conjugates as compared to the control. In conclusion, the developed MRSw assay based on SPIONs@IFNα-2b nanoparticles represents an alternative immunological probe for the estimation of anti-IFNα-2b antibodies that could be further employed in clinical studies.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Humanos , Interferones , Imagen por Resonancia Magnética , Medios de Contraste , Nanopartículas Magnéticas de Óxido de Hierro , Fenómenos Magnéticos , Nanopartículas de Magnetita/química
8.
Bioengineering (Basel) ; 9(11)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36354573

RESUMEN

Mesenchymal stem cells (MSCs) are attractive in various fields of regenerative medicine due to their therapeutic potential and complex unique properties. Basic stem cell research and the global COVID-19 pandemic have given impetus to the development of cell therapy for infectious diseases. The aim of this review was to systematize scientific data on the applications of mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (MSC-EVs) in the combined treatment of infectious diseases. Application of MSCs and MSC-EVs in the treatment of infectious diseases has immunomodulatory, anti-inflammatory, and antibacterial effects, and also promotes the restoration of the epithelium and stimulates tissue regeneration. The use of MSC-EVs is a promising cell-free treatment strategy that allows solving the problems associated with the safety of cell therapy and increasing its effectiveness. In this review, experimental data and clinical trials based on MSCs and MSC-EVs for the treatment of infectious diseases are presented. MSCs and MSC-EVs can be a promising tool for the treatment of various infectious diseases, particularly in combination with antiviral drugs. Employment of MSC-derived EVs represents a more promising strategy for cell-free treatment, demonstrating a high therapeutic potential in preclinical studies.

9.
J Funct Biomater ; 13(2)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35645270

RESUMEN

The combination of titania nanofilms and silver nanoparticles (NPs) is a very promising material, with antibacterial and osseointegration-induced properties for titanium implant coatings. In this work, we successfully prepared TiO2 nanolayer/Ag NP structures on titanium disks using atomic layer deposition (ALD). The samples were studied by scanning electron microscopy (SEM), X-ray diffraction, X-ray photoelectron spectroscopy (XPS), contact angle measurements, and SEM-EDS. Antibacterial activity was tested against Staphylococcus aureus. The in vitro cytological response of MG-63 osteosarcoma and human fetal mesenchymal stem cells (FetMSCs) was examined using SEM study of their morphology, MTT test of viability and differentiation using alkaline phosphatase and osteopontin with and without medium-induced differentiation in the osteogenic direction. The samples with TiO2 nanolayers, Ag NPs, and a TiO2/Ag combination showed high antibacterial activity, differentiation in the osteogenic direction, and non-cytotoxicity. The medium for differentiation significantly improved osteogenic differentiation, but the ALD coatings also stimulated differentiation in the absence of the medium. The TiO2/Ag samples showed the best antibacterial ability and differentiation in the osteogenic direction, indicating the success of the combining of TiO2 and Ag to produce a multifunctional biocompatible and bactericidal material.

10.
Biomedicines ; 10(12)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36551818

RESUMEN

In recent years, the application of mesenchymal stem cells (MSCs) has been recognized as a promising method for treatment of different diseases associated with inflammation and sclerosis, which include nephrotuberculosis. The aim of our study is to investigate the effectiveness of MSCs in the complex therapy of experimental rabbit kidney tuberculosis and to evaluate the effect of cell therapy on the reparative processes. Methods: To simulate kidney tuberculosis, a suspension of the standard strain Mycobacterium tuberculosis H37Rv (106 CFU) was used, which was injected into the cortical layer of the lower pole parenchyma of the left kidney under ultrasound control in rabbits. Anti-tuberculosis therapy (aTBT) was started on the 18th day after infection. MSCs (5 × 107 cells) were transplanted intravenously after the start of aTBT. Results: 2.5 months after infection, all animals showed renal failure. Conducted aTBT significantly reduced the level of albumin, ceruloplasmin, elastase and the severity of disorders in the proteinase/inhibitor system and increased the productive nature of inflammation. A month after MSC transplantation, the level of inflammatory reaction activity proteins decreased, the area of specific and destructive inflammation in kidneys decreased and the formation of mature connective tissue was noted, which indicates the reparative reaction activation.

11.
Artículo en Inglés | MEDLINE | ID: mdl-33662545

RESUMEN

Lipid rafts are membrane microdomains featuring high cholesterol, sphingolipid, and protein content. These microdomains recruit various receptors, ion channels, and signaling molecules for coordination of various cellular functions, including synaptic transmission, immune response, cytoskeletal organization, adhesion, and migration. Many of these processes also depend on Ca2+ intake. We have previously shown in Jurkat cells that activity of transient receptor potential vanilloid, type 6 (TRPV6) calcium channel, and TRPV6-mediated Ca2+ influx, depend on lipid raft integrity. In this study, using the transwell cell migration assay and time-lapse video microscopy with Jurkat cells, we found that lipid raft destruction was associated with: inhibited cell adhesion and migration; and decreased mean speed, maximum speed, and trajectory length. Using String Server, we constructed a Protein Interaction Network (PIN). The network indicated that TRPV6 proteins interact with the highest probability (0.9) with Src family kinase members (SFKs) involved in processes related to cell migration. Analysis of detergent-resistant membrane fractions and immunoelectron microscopy data confirmed an association in lipid rafts between TRPV6 and Lck kinase, an SFKs member. Destruction of lipid rafts led to uncoupling of TRPV6 clusters with Lck and their departure from the plasma membrane into the cytosol of the cells. Src family kinases are generally associated with their roles in tumor invasion and progression, epithelial-mesenchymal transitions, angiogenesis, and metastatic development. We suggest that a functional interaction between TRPV6 calcium channels and SFKs members in lipid rafts is one of necessary elements of migration and oncogenic signaling in leukemia cells.


Asunto(s)
Movimiento Celular , Leucemia/patología , Microdominios de Membrana/metabolismo , Adhesión Celular , Humanos , Células Jurkat , Transporte de Proteínas , Canales Catiónicos TRPV/metabolismo
12.
Biomedicines ; 9(10)2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34680551

RESUMEN

To rationalize the antiviral actions of plant alkaloids, the ability of 20 compounds to inhibit calcium-mediated fusion of lipid vesicles composed of phosphatidylglycerol and cholesterol was investigated using the calcein release assay and dynamic light scattering. Piperine, tabersonine, hordenine, lupinine, quinine, and 3-isobutyl-1-methylxanthine demonstrated the most potent effects (inhibition index greater than 50%). The introduction of phosphatidylcholine into the phosphatidylglycerol/cholesterol mixture led to significant changes in quinine, hordenine, and 3-isobutyl-1-methylxanthine efficiency. Comparison of the fusion inhibitory ability of the tested alkaloids, and the results of the measurements of alkaloid-induced alterations in the physical properties of model membranes indicated a potent relationship between a decrease in the cooperativity of the phase transition of lipids and the ability of alkaloids to prevent calcium-mediated vesicle fusion. In order to use this knowledge to combat the novel coronavirus pandemic, the ability of the most effective compounds to suppress membrane fusion induced by fragments of MERS-CoV and SARS-CoV/SARS-CoV-2 fusion peptides was studied using the calcein release assay and confocal fluorescence microscopy. Piperine was shown to inhibit vesicle fusion mediated by both coronavirus peptides. Moreover, piperine was shown to significantly reduce the titer of SARS-CoV2 progeny in vitro in Vero cells when used in non-toxic concentrations.

13.
J Biomed Mater Res B Appl Biomater ; 109(4): 584-595, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32935912

RESUMEN

Implant-associated soft tissue infections at the skin-implant interface represent the most frequent complications in reconstructive surgery and lead to implant failures and revisions. Titanium implants with deep porosity, called skin-and-bone-integrated-pylons (SBIP), allow for skin ingrowth in the morphologically natural direction, thus restoring a reliable dermal barrier and reducing the risk of infection. Silver coating of the SBIP implant surface using physical vapor deposition technique offers the possibility of preventing biofilm formation and exerting a direct antimicrobial effect during the wound healing phase. In vivo studies employing pig and rabbit dorsum models for assessment of skin ingrowth into the pores of the pylon demonstrated the safety of transcutaneous implantation of the SBIP system. No postoperative complications were reported at the end of the follow-up period of 6 months. Histological analysis proved skin ingrowth in the minipig model without signs of silver toxicity. Analysis of silver release (using energy dispersive X-ray spectroscopy) in the model of intramedullary-inserted silver-coated SBIP in New Zealand rabbits demonstrated trace amounts of silver after 3 months of in-bone implantation. In conclusion, selected temporary silver coating of the SBIP implant surface is powerful at preventing the periprosthetic infections without imparing skin ingrowth and can be considered for clinical application.


Asunto(s)
Materiales Biocompatibles Revestidos , Implantes Experimentales , Plata/farmacología , Infecciones de los Tejidos Blandos/prevención & control , Infección de la Herida Quirúrgica/prevención & control , Cicatrización de Heridas , Implantes Absorbibles , Animales , Materiales Biocompatibles Revestidos/efectos adversos , Implantes Experimentales/efectos adversos , Masculino , Ensayo de Materiales , Metaloproteinasas de la Matriz/análisis , Microscopía Electrónica de Rastreo , Oseointegración , Porosidad , Diseño de Prótesis , Conejos , Plata/administración & dosificación , Piel/lesiones , Infecciones de los Tejidos Blandos/etiología , Espectrometría por Rayos X , Infección de la Herida Quirúrgica/etiología , Porcinos , Titanio , Cicatrización de Heridas/efectos de los fármacos
14.
Biomedicines ; 9(11)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34829821

RESUMEN

Despite multimodal approaches for the treatment of multiforme glioblastoma (GBM) advances in outcome have been very modest indicating the necessity of novel diagnostic and therapeutic strategies. Currently, mesenchymal stem cells (MSCs) represent a promising platform for cell-based cancer therapies because of their tumor-tropism, low immunogenicity, easy accessibility, isolation procedure, and culturing. In the present study, we assessed the tumor-tropism and biodistribution of the superparamagnetic iron oxide nanoparticle (SPION)-labeled MSCs in the orthotopic model of C6 glioblastoma in Wistar rats. As shown in in vitro studies employing confocal microscopy, high-content quantitative image cytometer, and xCelligence system MSCs exhibit a high migratory capacity towards C6 glioblastoma cells. Intravenous administration of SPION-labeled MSCs in vivo resulted in intratumoral accumulation of the tagged cells in the tumor tissues that in turn significantly enhanced the contrast of the tumor when high-field magnetic resonance imaging was performed. Subsequent biodistribution studies employing highly sensitive nonlinear magnetic response measurements (NLR-M2) supported by histological analysis confirm the retention of MSCs in the glioblastoma. In conclusion, MSCs due to their tumor-tropism could be employed as a drug-delivery platform for future theranostic approaches.

15.
J Biomed Mater Res B Appl Biomater ; 108(3): 1010-1021, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31369698

RESUMEN

Reconstructive surgery for urethral defects employing tissue-engineered scaffolds represents an alternative treatment for urethroplasty. The aim of this study was to compare the therapeutic efficacy of the bilayer poly-D,L-lactide/poly-ε-caprolactone (PL-PC) scaffold seeded with allogenic mesenchymal stem cells (MSCs) for urethra reconstruction in a rabbit model with conventional urethroplasty employing an autologous buccal mucosa graft (BG). The inner layer of the scaffold based on poly-D,L-lactic acid (PL) was seeded with MSCs, while the outer layer, prepared from poly-ε-caprolactone, protected the surrounding tissues from urine. To track the MSCs in vivo, the latter were labeled with superparamagnetic iron oxide nanoparticles. In rabbits, a dorsal penile defect was reconstructed employing a BG or a PL-PC graft seeded with nanoparticle-labeled MSCs. In the 12-week follow-up period, no complications were detected. Subsequent histological analysis demonstrated biointegration of the PL-PC graft with surrounding urethral tissues. Less fibrosis and inflammatory cell infiltration were observed in the experimental group as compared with the BG group. Nanoparticle-labeled MSCs were detected in the urothelium and muscular layer, co-localizing with the urothelium cytokeratin marker AE1/AE3, indicating the possibility of MSC differentiation into neo-urothelium. Our results suggest that a bilayer MSCs-seeded scaffold could be efficiently employed for urethroplasty.


Asunto(s)
Células Madre Mesenquimatosas/citología , Poliésteres/química , Ingeniería de Tejidos/instrumentación , Uretra/cirugía , Animales , Células de la Médula Ósea/citología , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Chinchilla , Condrocitos/citología , Compuestos Férricos/química , Inflamación , Membrana Dobles de Lípidos , Masculino , Nanopartículas del Metal/química , Mucosa Bucal/patología , Nanopartículas/química , Conejos , Andamios del Tejido/química , Trasplante Homólogo , Urotelio/metabolismo
16.
J Biomed Mater Res B Appl Biomater ; 107(1): 169-177, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29573163

RESUMEN

Periprosthetic infection via skin-implant interface is a leading cause of failures and revisions in direct skeletal attachment of limb prostheses. Implants with deep porosity fabricated with skin and bone integrated pylons (SBIP) technology allow for skin ingrowth through the implant's structure creating natural barrier against infection. However, until the skin cells remodel in all pores of the implant, additional care is required to prevent from entering bacteria to the still nonoccupied pores. Temporary silver coating was evaluated in this work as a means to provide protection from infection immediately after implantation followed by dissolution of silver layer in few weeks. A sputtering coating with 1 µm thickness was selected to be sufficient for fighting infection until the deep ingrowth of skin in the porous structure of the pylon is completed. In vitro study showed less bacterial (Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa) growth on silver coated tablets compared to the control group. Analysis of cellular density of MG-63 cells, fibroblasts, and mesenchymal stem cells (MSCs) showed that silver coating did not inhibit the cell growth on the implants and did not affect cellular functional activity. The in vivo study did not show any postoperative complications during the 6-month observation period in the model of above-knee amputation in rabbits when SBIP implants, either silver-coated or untreated were inserted into the bone residuum. Three-phase scintigraphy demonstrated angiogenesis in the pores of the pylons. The findings suggest that a silver coating with well-chosen specifications can increase the safety of porous implants for direct skeletal attachment. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 169-177, 2019.


Asunto(s)
Antibacterianos/química , Bacterias/crecimiento & desarrollo , Infecciones Bacterianas , Interfase Hueso-Implante , Materiales Biocompatibles Revestidos/química , Implantes Experimentales/microbiología , Plata/química , Piel , Animales , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/patología , Interfase Hueso-Implante/microbiología , Interfase Hueso-Implante/patología , Línea Celular Tumoral , Humanos , Masculino , Porosidad , Conejos , Piel/microbiología , Piel/patología
17.
ACS Biomater Sci Eng ; 4(9): 3268-3281, 2018 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-33435061

RESUMEN

An integrated approach combining severe plastic deformation (SPD), chemical etching (CE), and atomic layer deposition (ALD) was used to produce titanium implants with enhanced osseointegration. The relationship between morphology, topography, surface composition, and bioactivity of ultra-fine-grained (UFG) titanium modified by CE and ALD was studied in detail. The topography and morphology have been studied by means of atomic force microscopy, scanning electron microscopy, and the spectral ellipsometry. The composition and structure have been determined by X-ray fluorescence analysis, X-ray diffraction, and X-ray photoelectron spectroscopy. The wettability of the surfaces was examined by the contact angle measurement. The bioactivity and biocompatibility of the samples were studied in vitro and in vivo. CE of UFG titanium in basic (NH4OH/H2O2) or acidic (H2SO4/H2O2) piranha solution significantly enhances the surface roughness and leads to microstructures, nanostructures, and hierarchical micro-/nanostructures on the surfaces. In vitro results demonstrate deterioration of adhesion, proliferation, and differentiation of MC3T3-E1 osteoblasts cell for CE samples as compared to the non-treated ones. Atomic layer deposition of crystalline titanium oxide onto the CE samples increased hydrophilicity, changed the surface composition, and enhanced significantly in vitro characteristics. In vivo experiments demonstrated non-toxicity of the implants. Etching in basic piranha solution with subsequent ALD significantly improved implant osseointegration as compared with the non-modified samples.

18.
Int J Nanomedicine ; 13: 2175-2188, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29692612

RESUMEN

BACKGROUND: Titanium (Ti) implants are extensively used in reconstructive surgery and orthopedics. However, the intrinsic inertness of untreated Ti implants usually results in insufficient osseointegration. In order to improve the osteoconductivity properties of the implants, they are coated with hierarchical microtopographic/nanotopographic coatings employing the method of molecular layering of atomic layer deposition (ML-ALD). RESULTS: The analysis of the fabricated nanostructured relief employing scanning electron microscopy, atomic force microscopy, and electron spectroscopy for chemical analysis clearly demonstrated the formation of the nanotopographic (<100 nm) and microtopographic (0.1-0.5 µm) titano-organic structures on the surface of the nanograined Ti implants. Subsequent coincubation of the MC3T3-E1 mouse osteoblasts on the microtopographic/nanotopographic surface of the implants resulted in enhanced osteogenic cell differentiation (the production of alkaline phosphatase, osteopontin, and osteocalcin). In vivo assessment of the osseointegrative properties of the microtopographically/nanotopographically coated implants in a model of below-knee amputation in New Zealand rabbits demonstrated enhanced new bone formation in the zone of the bone-implant contact (as measured by X-ray study) and increased osseointegration strength (removal torque measurements). CONCLUSION: The fabrication of the hierarchical microtopographic/nanotopographic coatings on the nanograined Ti implants significantly improves the osseointegrative properties of the intraosseous Ti implants. This effect could be employed in both translational and clinical studies in orthopedic and reconstructive surgery.


Asunto(s)
Interfase Hueso-Implante/fisiología , Materiales Biocompatibles Revestidos/farmacología , Osteoblastos/citología , Prótesis e Implantes , Titanio , Fosfatasa Alcalina/metabolismo , Animales , Regeneración Ósea , Diferenciación Celular , Materiales Biocompatibles Revestidos/química , Masculino , Ratones , Microscopía Electrónica de Rastreo , Nanoestructuras/química , Oseointegración/efectos de los fármacos , Osteocalcina/metabolismo , Osteogénesis , Conejos , Propiedades de Superficie , Titanio/química , Torque
19.
J Tissue Eng Regen Med ; 12(3): e1580-e1593, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28990734

RESUMEN

Urogenital tuberculosis (TB) often leads to contraction of the bladder, a reduction of the urinary reservoir capacity, and, in the latest stage, to real microcystitis up to full obliteration. Bladder TB Stage 4 is unsuitable for conservative therapy, and cystectomy with subsequent enteroplasty is indicated. In this study, using a model of bladder TB in New Zealand rabbits, the therapeutic efficacy of the interstitial injection of autologous bone-derived mesenchymal stem cells (MSCs) combined with standard anti-TB treatment in the restoration of the bladder function was demonstrated. For analysis of the MSC distribution in tissues, the latter were labelled with superparamagnetic iron oxide nanoparticles. In vitro studies demonstrated the high intracellular incorporation of nanoparticles and the absence of cytotoxicity on MSC viability and proliferation. A single-dose administration of MSCs into the bladder mucosal layer significantly reduced the wall deformation and inflammation and hindered the development of fibrosis, which was proven by the subsequent histological assay. Confocal microscopy studies of the bladder cryosections confirmed the presence of superparamagnetic iron oxide nanoparticle-labelled MSCs in different bladder layers of the treated animals, thus indicating the role of stem cells in bladder regeneration.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Tuberculosis/terapia , Vejiga Urinaria/patología , Animales , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Diferenciación Celular , Forma de la Célula , Modelos Animales de Enfermedad , Nanopartículas de Magnetita/química , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Conejos , Trasplante Homólogo , Tuberculosis/tratamiento farmacológico , Tuberculosis/patología , Vejiga Urinaria/efectos de los fármacos
20.
Nanomaterials (Basel) ; 7(10)2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-29027930

RESUMEN

In this work, we analyze the efficiency of the modification of the implant surface. This modification was reached by the formation of a two-level relief hierarchy by means of a sol-gel approach that included dip coating with subsequent shock drying. Using this method, we fabricated a nanoporous layer with micron-sized defects on the nanotitanium surface. The present work continues an earlier study by our group, wherein the effect of osteoblast-like cell adhesion acceleration was found. In the present paper, we give the results of more detailed evaluation of coating efficiency. Specifically, cytological analysis was performed that included the study of the marker levels of osteoblast-like cell differentiation. We found a significant increase in the activity of alkaline phosphatase at the initial incubation stage. This is very important for implantation, since such an effect assists the decrease in the induction time of implant engraftment. Moreover, osteopontin expression remains high for long expositions. This indicates a prolonged osteogenic effect in the coating. The results suggest the acceleration of the pre-implant area mineralization and, correspondingly, the potential use of the developed coatings for bone implantation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA