Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Immun Ageing ; 20(1): 27, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37340309

RESUMEN

TDP-43 is an important DNA/RNA-binding protein that is associated with age-related neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD); however, its pathomechanism is not fully understood. In a transgenic RNAi screen using Drosophila as a model, we uncovered that knockdown (KD) of Dsor1 (the Drosophila MAPK kinase dMEK) suppressed TDP-43 toxicity without altering TDP-43 phosphorylation or protein levels. Further investigation revealed that the Dsor1 downstream gene rl (dERK) was abnormally upregulated in TDP-43 flies, and neuronal overexpression of dERK induced profound upregulation of antimicrobial peptides (AMPs). We also detected a robust immune overactivation in TDP-43 flies, which could be suppressed by downregulation of the MEK/ERK pathway in TDP-43 fly neurons. Furthermore, neuronal KD of abnormally increased AMPs improved the motor function of TDP-43 flies. On the other hand, neuronal KD of Dnr1, a negative regulator of the Drosophila immune deficiency (IMD) pathway, activated the innate immunity and boosted AMP expression independent of the regulation by the MEK/ERK pathway, which diminished the mitigating effect of RNAi-dMEK on TDP-43 toxicity. Finally, we showed that an FDA-approved MEK inhibitor trametinib markedly suppressed immune overactivation, alleviated motor deficits and prolonged the lifespan of TDP-43 flies, but did not exhibit a lifespan-extending effect in Alzheimer disease (AD) or spinocerebellar ataxia type 3 (SCA3) fly models. Together, our findings suggest an important role of abnormal elevation of the MEK/ERK signaling and innate immunity in TDP-43 pathogenesis and propose trametinib as a potential therapeutic agent for ALS and other TDP-43-related diseases.

2.
Analyst ; 147(15): 3424-3433, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35670058

RESUMEN

Since cancer has emerged as one of the most serious threats to human health, the highly sensitive determination of cancer cells is of significant importance to improve the accuracy of early clinical diagnosis. In our investigation, a novel cascade Fermat spiral microfluidic mixer chip (CFSMMC) combined with fluorescence sensors as a point-of-care (POC) testing system is successfully fabricated to detect and differentiate cancer cells (MCF-7) from normal cells with excellent sensitivity and selectivity. Here, copper ions (Cu2+) with peroxidase properties can catalyze the oxidation of the non-fluorescent substrate Amplex Red (AR) to the highly fluorescent resorufin (ox-AR) in the presence of hydrogen peroxide (H2O2). Subsequently, thanks to the quenching response of AS1411-AuNPs to ox-AR in the microchannel and the binding of AS1411 to nucleolin on the surface of cancer cells, a CFSMMC-based POC system is established for the highly sensitive detection and identification of human breast cancer cells in a "turn on" manner. The change in fluorescence intensity is linearly related to the concentration of MCF-7, ranging from 102 to 107 cells per mL with a limit of detection (LOD) as low as 17 cells per mL. Interestingly, the cascaded AND logic gate is integrated with CFSMMC for the first time to distinguish cancer cells from normal cells under the control of logic functions, which exhibits great potential in the development of one-step rapid and intelligent detection and logic discrimination.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Oro , Humanos , Peróxido de Hidrógeno , Límite de Detección , Microfluídica
3.
Micromachines (Basel) ; 14(2)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36838167

RESUMEN

In this paper, the X-ray diffraction full width at half the maximum (XRD FWHM) of a 3.5 µm-thick hydride vapor phase epitaxy-aluminum nitride (HVPE-AlN) (002) face after high-temperature annealing was reduced to 129 arcsec. The tensile strain in the HVPE-AlN samples gradually released with the increasing annealing temperature. When the annealing temperature exceeded 1700 °C, an aluminum oxynitride (AlON) region was generated at the contact interface between HVPE-AlN and sapphire, and the AlON structure was observed to conform to the characteristics of Al5O6N by high-resolution transmission electron microscopy (HRTEM). A 265 nm light-emitting diode (LED) based on an HVPE-AlN template annealed at 1700 °C achieved a light output power (LOP) of 4.48 mW at 50 mA, which was approximately 57% greater than that of the original sample.

4.
Biosens Bioelectron ; 239: 115586, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37603988

RESUMEN

Abusive use of ß-agonists as feed additives for animals and medication is detrimental to human health and food safety. Conventional assays are restricted to a single type of ß-agonists detection and cannot match the multiplexing features to perform automated, high throughput, and rapid quantitative analysis in real samples. In this research, we develop a portable automated chip system (PACS) with highly integrated automated devices in conjunction with portable microfluidic chips to provide simultaneous point-of-care testing of multiple ß-agonists in the field, simplifying complex manual methods, shortening assay times, and improving sensitivity. Specifically, silicon film is used as reaction substrates for immobilizing the conjugates of ß-agonists to increase the sensitivity of the assay result. Then, the PACS with a chemiluminescence imaging detector is established for automatic high-throughput and sensitive detection of Clenbuterol, Ractopamine, and Salbutamol based on the indirect immunoassay. Newly developed chip with high mixing performance can improve the sensitivity of target determination. Multiplex assays were carried out using the developed system for Clenbuterol, Ractopamine, and Salbutamol with a limit of detection of 54 pg mL-1,59 pg mL-1, and 93 pg mL-1, respectively. Except for sample preparation and coating, the detection in the PACS takes less than 47 min. A satisfactory sample recovery (86.33%-108.12%) was obtained, validating the reliability and practical applicability of this PACS. Meanwhile, the PACS enables sensitive and rapid detection of multiple ß-agonists in farms or markets where lacking advanced laboratory facilities.


Asunto(s)
Técnicas Biosensibles , Clenbuterol , Animales , Humanos , Reproducibilidad de los Resultados , Albuterol , Pruebas en el Punto de Atención
5.
J Mater Chem B ; 11(9): 1978-1986, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36752153

RESUMEN

Since procalcitonin (PCT) is a specific inflammation indicator of severe bacterial inflammation and fungal infection, it is of great significance to construct a sensitive and rapid microfluidic chip to detect PCT in clinical application. The design of micromixers using a lab-on-a-chip (LOC) device is the premise to realizing the adequate mixing of analytical samples and reagents and is an important measure to improve the accuracy and efficiency of determination. In this research study, we investigate the mixing characteristics of hyperbolic micromixers and explore the effects of different hyperbolic curvatures, different Reynolds numbers (Re) and different channel widths on the mixing performance of the micromixers. Then, an optimal micromixer was integrated into a microfluidic chip to fabricate a desirable hyperbolic microfluidic chip (DHMC) for the sensitive determination of inflammation marker PCT with a limit of detection (LOD) as low as 0.17 ng mL-1via a chemiluminescence signal, which can be used as a promising real-time platform for early clinical diagnosis.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Humanos , Polipéptido alfa Relacionado con Calcitonina , Luminiscencia , Inflamación
6.
Aging Cell ; 22(10): e13947, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37594178

RESUMEN

Glia and neurons face different challenges in aging and may engage different mechanisms to maintain their morphology and functionality. Here, we report that adult-onset downregulation of a Drosophila gene CG32529/GLAD led to shortened lifespan and age-dependent brain degeneration. This regulation exhibited cell type and subtype-specificity, involving mainly surface glia (comprising the BBB) and cortex glia (wrapping neuronal soma) in flies. In accordance, pan-glial knockdown of GLAD disrupted BBB integrity and the glial meshwork. GLAD expression in fly heads decreased with age, and the RNA-seq analysis revealed that the most affected transcriptional changes by RNAi-GLAD were associated with upregulation of immune-related genes. Furthermore, we conducted a series of lifespan rescue experiments and the results indicated that the profound upregulation of immune and related pathways was not the consequence but cause of the degenerative phenotypes of the RNAi-GLAD flies. Finally, we showed that GLAD encoded a heterochromatin-associating protein that bound to the promoters of an array of immune-related genes and kept them silenced during the cell cycle. Together, our findings demonstrate a previously unappreciated role of heterochromatic gene silencing in repressing immunity in fly glia, which is required for maintaining BBB and brain integrity as well as normal lifespan.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Longevidad/genética , Neuroglía/metabolismo
7.
J Cell Biol ; 221(1)2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34726688

RESUMEN

The ESCRT protein CHMP2B and the RNA-binding protein TDP-43 are both associated with ALS and FTD. The pathogenicity of CHMP2B has mainly been considered a consequence of autophagy-endolysosomal dysfunction, whereas protein inclusions containing phosphorylated TDP-43 are a pathological hallmark of ALS and FTD. Intriguingly, TDP-43 pathology has not been associated with the FTD-causing CHMP2BIntron5 mutation. In this study, we identify CHMP2B as a modifier of TDP-43-mediated neurodegeneration in a Drosophila screen. Down-regulation of CHMP2B reduces TDP-43 phosphorylation and toxicity in flies and mammalian cells. Surprisingly, although CHMP2BIntron5 causes dramatic autophagy dysfunction, disturbance of autophagy does not alter TDP-43 phosphorylation levels. Instead, we find that inhibition of CK1, but not TTBK1/2 (all of which are kinases phosphorylating TDP-43), abolishes the modifying effect of CHMP2B on TDP-43 phosphorylation. Finally, we uncover that CHMP2B modulates CK1 protein levels by negatively regulating ubiquitination and the proteasome-mediated turnover of CK1. Together, our findings propose an autophagy-independent role and mechanism of CHMP2B in regulating CK1 abundance and TDP-43 phosphorylation.


Asunto(s)
Autofagia , Quinasa de la Caseína I/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Muerte Celular , Línea Celular Tumoral , Modelos Animales de Enfermedad , Neuroblastoma/patología , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo
8.
Nanomaterials (Basel) ; 11(8)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34443840

RESUMEN

In this paper, the conditions of the dip-coating method of SiO2 nanospheres are optimized, and a neatly arranged single-layer SiO2 array is obtained. On this basis, a "top-down" inductively coupled plasma (ICP) technique is used to etch the p-GaN layer to prepare a periodic triangular nanopore array. After the etching is completed, the compressive stress in the epitaxial wafer sample is released to a certain extent. Then, die processing is performed on the etched LED epitaxial wafer samples. The LED chip with an etching depth of 150 nm has the highest overall luminous efficiency. Under a 100 mA injection current, the light output power (LOP) of the etched 150 nm sample is 23.61% higher than that of the original unetched sample.

9.
ACS Omega ; 6(45): 30779-30789, 2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34805706

RESUMEN

Micromixers with the microchannel structure can enable rapid and efficient mixing of multiple types of fluids on a microfluidic chip. Herein, we report the mixing performance of three passive micromixers based on the different mathematical spiral structures. We study the fluid flow characteristics of Archimedes spiral, Fermat spiral, and hyperbolic spiral structures with various channel widths and Reynolds number (Re) ranging from 0 to 10 via numerical simulation and visualization experiments. In addition, we analyze the mechanism of streamlines and Dean vortices at different cross sections during fluid flows. As the fluid flows in the Fermat spiral channel, the centrifugal force induces the Dean vortex to form a chaotic advection, enhancing the fluid mixing performance. By integrating the Fermat spiral channel into a microfluidic chip, we successfully detect acute myocardial infarction (AMI) marker with the double-antibody sandwich method and reduce the detection time to 10 min. This method has a low reagent consumption and a high reaction efficiency and demonstrates great potential in point-of-care testing (POCT).

10.
Micromachines (Basel) ; 12(11)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34832792

RESUMEN

Metal ions in high concentrations can pollute the marine environment. Human activities and industrial pollution are the causes of Cu2+ contamination. Here, we report our discovery of an enzyme method-based microfluidic that can be used to rapidly detect Cu2+ in seawater. In this method, Cu2+ is reduced to Cu+ to inhibit horseradish peroxidase (HRP) activity, which then results in the color distortion of the reaction solution. The chip provides both naked eye and spectrophotometer modalities. Cu2+ concentrations have an ideal linear relationship, with absorbance values ranging from 3.91 nM to 256 µM. The proposed enzyme method-based microfluidic chip detects Cu2+ with a limit of detection (LOD) of 0.87 nM. Other common metal ions do not affect the operation of the chip. The successful detection of Cu2+ was achieved using three real seawater samples, verifying the ability of the chip in practical applications. Furthermore, the chip realizes the functions of two AND gates in series and has potential practical implementations in biochemical detection and biological computing.

11.
Materials (Basel) ; 13(22)2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33202801

RESUMEN

Magnetron sputtering is adopted to deposit ~25 nm thick AlN on the surface of hexagonal BN(h-BN)/sapphire substrates, followed by epitaxial GaN growth on top of the AlN/h-BN/sapphire substrate using a metal-organic chemical vapor deposition system. Compared to GaN grown on the h-BN/sapphire surface directly, this method results in a continuous and smooth GaN film with a smaller root mean square roughness. Besides, the introduction of the sputtered AlN layer reduces the dislocation density of GaN by 35.7%. We provide a pathway of GaN epitaxy on the h-BN surface, which significantly improves its surface morphology and crystal quality.

12.
Materials (Basel) ; 13(2)2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-31963566

RESUMEN

To obtain excellent current spreading performance of ultraviolet light-emitting diodes (UVLEDs), a 60-period stacked Si modulation-doped n-AlGaN/u-GaN structure is proposed to replace the traditional n-AlGaN structure. The high-resolution X-ray diffraction ω-scan rocking curves show that the periodic growth of AlGaN and GaN layers plays a positive role in reducing dislocation density. Compared with the conventional UV light-emitting diodes (LEDs), light emission micrographs of devices with a multi-layer stacked n-AlGaN/u-GaN structure reveal higher brightness and a more uniform distribution. In addition, the output power and external quantum efficiency under a 20-mA injection current are increased by 22% and 26.5%, respectively. Experimental and simulation results indicate that a multi-layer stacking structure can alleviate the current crowding effect in four ways: (1) a reduction in dislocation density; (2) replacement of quasi-two-dimensional electron transport with electronic bulk transport to enhance electron mobility; (3) an increase in electron concentration without improving the impurity concentration; and (4) a weakening of the electron scattering effect by reducing the impurity concentration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA