Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Circ Res ; 126(3): 315-329, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31815595

RESUMEN

Rationale: Systemic inflammation compromises the reparative properties of endothelial progenitor cell (EPC) and their exosomes on myocardial repair, although the underlying mechanism of loss of function of exosomes from inflamed EPCs is still obscure. Objective: To determine the mechanisms of IL-10 (interleukin-10) deficient-EPC-derived exosome dysfunction in myocardial repair and to investigate if modification of specific exosome cargo can rescue reparative activity. Methods and Results: Using IL-10 knockout mice mimicking systemic inflammation condition, we compared therapeutic effect and protein cargo of exosomes isolated from wild-type EPC and IL-10 knockout EPC. In a mouse model of myocardial infarction (MI), wild-type EPC-derived exosome treatment significantly improved left ventricle cardiac function, inhibited cell apoptosis, reduced MI scar size, and promoted post-MI neovascularization, whereas IL-10 knockout EPC-derived exosome treatment showed diminished and opposite effects. Mass spectrometry analysis revealed wild-type EPC-derived exosome and IL-10 knockout EPC-derived exosome contain different protein expression pattern. Among differentially expressed proteins, ILK (integrin-linked kinase) was highly enriched in both IL-10 knockout EPC-derived exosome as well as TNFα (tumor necrosis factor-α)-treated mouse cardiac endothelial cell-derived exosomes (TNFα inflamed mouse cardiac endothelial cell-derived exosome). ILK-enriched exosomes activated NF-κB (nuclear factor κB) pathway and NF-κB-dependent gene transcription in recipient endothelial cells and this effect was partly attenuated through ILK knockdown in exosomes. Intriguingly, ILK knockdown in IL-10 knockout EPC-derived exosome significantly rescued their reparative dysfunction in myocardial repair, improved left ventricle cardiac function, reduced MI scar size, and enhanced post-MI neovascularization in MI mouse model. Conclusions: IL-10 deficiency/inflammation alters EPC-derived exosome function, content and therapeutic effect on myocardial repair by upregulating ILK enrichment in exosomes, and ILK-mediated activation of NF-κB pathway in recipient cells, whereas ILK knockdown in exosomes attenuates NF-κB activation and reduces inflammatory response. Our study provides new understanding of how inflammation may alter stem cell-exosome-mediated cardiac repair and identifies ILK as a target kinase for improving progenitor cell exosome-based cardiac therapies.


Asunto(s)
Células Progenitoras Endoteliales/metabolismo , Exosomas/trasplante , Interleucina-10/genética , Infarto del Miocardio/terapia , Proteínas Serina-Treonina Quinasas/metabolismo , Cicatrización de Heridas , Animales , Células Cultivadas , Exosomas/metabolismo , Interleucina-10/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Función Ventricular Izquierda
2.
Circulation ; 136(10): 940-953, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28667100

RESUMEN

BACKGROUND: Activated fibroblasts (myofibroblasts) play a critical role in cardiac fibrosis; however, their origin in the diseased heart remains unclear, warranting further investigation. Recent studies suggest the contribution of bone marrow fibroblast progenitor cells (BM-FPCs) in pressure overload-induced cardiac fibrosis. We have previously shown that interleukin-10 (IL10) suppresses pressure overload-induced cardiac fibrosis; however, the role of IL10 in inhibition of BM-FPC-mediated cardiac fibrosis is not known. We hypothesized that IL10 inhibits pressure overload-induced homing of BM-FPCs to the heart and their transdifferentiation to myofibroblasts and thus attenuates cardiac fibrosis. METHODS: Pressure overload was induced in wild-type (WT) and IL10 knockout (IL10KO) mice by transverse aortic constriction. To determine the bone marrow origin, chimeric mice were created with enhanced green fluorescent protein WT mice marrow to the IL10KO mice. For mechanistic studies, FPCs were isolated from mouse bone marrow. RESULTS: Pressure overload enhanced BM-FPC mobilization and homing in IL10KO mice compared with WT mice. Furthermore, WT bone marrow (from enhanced green fluorescent protein mice) transplantation in bone marrow-depleted IL10KO mice (IL10KO chimeric mice) reduced transverse aortic constriction-induced BM-FPC mobilization compared with IL10KO mice. Green fluorescent protein costaining with α-smooth muscle actin or collagen 1α in left ventricular tissue sections of IL10KO chimeric mice suggests that myofibroblasts were derived from bone marrow after transverse aortic constriction. Finally, WT bone marrow transplantation in IL10KO mice inhibited transverse aortic constriction-induced cardiac fibrosis and improved heart function. At the molecular level, IL10 treatment significantly inhibited transforming growth factor-ß-induced transdifferentiation and fibrotic signaling in WT BM-FPCs in vitro. Furthermore, fibrosis-associated microRNA (miRNA) expression was highly upregulated in IL10KO-FPCs compared with WT-FPCs. Polymerase chain reaction-based selective miRNA analysis revealed that transforming growth factor-ß-induced enhanced expression of fibrosis-associated miRNAs (miRNA-21, -145, and -208) was significantly inhibited by IL10. Restoration of miRNA-21 levels suppressed the IL10 effects on transforming growth factor-ß-induced fibrotic signaling in BM-FPCs. CONCLUSIONS: Our findings suggest that IL10 inhibits BM-FPC homing and transdifferentiation to myofibroblasts in pressure-overloaded myocardium. Mechanistically, we show for the first time that IL10 suppresses Smad-miRNA-21-mediated activation of BM-FPCs and thus modulates cardiac fibrosis.


Asunto(s)
Ecocardiografía/métodos , Fibroblastos/metabolismo , Fibrosis/metabolismo , Cardiopatías/complicaciones , Interleucina-10/genética , Interleucina-10/metabolismo , Miocardio/metabolismo , Animales , Médula Ósea , Femenino , Fibroblastos/patología , Humanos , Ratones , Ratones Transgénicos , Miocardio/patología , Transducción de Señal
4.
JCI Insight ; 52019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31393858

RESUMEN

Dual peroxisome proliferator-activated receptor (PPAR)α/γ agonists that were developed to target hyperlipidemia and hyperglycemia in type 2 diabetes patients, caused cardiac dysfunction or other adverse effects. We studied the mechanisms that underlie the cardiotoxic effects of a dual PPARα/γ agonist, tesaglitazar, in wild type and diabetic (leptin receptor deficient - db/db) mice. Mice treated with tesaglitazar-containing chow or high fat diet developed cardiac dysfunction despite lower plasma triglycerides and glucose levels. Expression of cardiac peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), which promotes mitochondrial biogenesis, had the most profound reduction among various fatty acid metabolism genes. Furthermore, we observed increased acetylation of PGC1α, which suggests PGC1α inhibition and lowered sirtuin 1 (SIRT1) expression. This change was associated with lower mitochondrial abundance. Combined pharmacological activation of PPARα and PPARγ in C57BL/6 mice reproduced the reduction of PGC1α expression and mitochondrial abundance. Resveratrol-mediated SIRT1 activation attenuated tesaglitazar-induced cardiac dysfunction and corrected myocardial mitochondrial respiration in C57BL/6 and diabetic mice but not in cardiomyocyte-specific Sirt1-/- mice. Our data shows that drugs, which activate both PPARα and PPARγ lead to cardiac dysfunction associated with PGC1α suppression and lower mitochondrial abundance likely due to competition between these two transcription factors.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , PPAR alfa/metabolismo , PPAR gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Peroxisomas/metabolismo , Sirtuina 1/metabolismo , Alcanosulfonatos/efectos adversos , Animales , Glucemia , Línea Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , PPAR alfa/agonistas , PPAR gamma/agonistas , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Fenilpropionatos/efectos adversos , Receptores de Leptina/metabolismo , Sirtuina 1/genética , Factores de Transcripción , Transcriptoma
5.
Nat Commun ; 10(1): 4317, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31541092

RESUMEN

Circular RNAs are generated from many protein-coding genes, but their role in cardiovascular health and disease states remains unknown. Here we report identification of circRNA transcripts that are differentially expressed in post myocardial infarction (MI) mouse hearts including circFndc3b which is significantly down-regulated in the post-MI hearts. Notably, the human circFndc3b ortholog is also significantly down-regulated in cardiac tissues of ischemic cardiomyopathy patients. Overexpression of circFndc3b in cardiac endothelial cells increases vascular endothelial growth factor-A expression and enhances their angiogenic activity and reduces cardiomyocytes and endothelial cell apoptosis. Adeno-associated virus 9 -mediated cardiac overexpression of circFndc3b in post-MI hearts reduces cardiomyocyte apoptosis, enhances neovascularization and improves left ventricular functions. Mechanistically, circFndc3b interacts with the RNA binding protein Fused in Sarcoma to regulate VEGF expression and signaling. These findings highlight a physiological role for circRNAs in cardiac repair and indicate that modulation of circFndc3b expression may represent a potential strategy to promote cardiac function and remodeling after MI.


Asunto(s)
Fibronectinas/genética , Infarto del Miocardio/metabolismo , Isquemia Miocárdica/metabolismo , ARN Circular/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Apoptosis/fisiología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Isquemia Miocárdica/genética , Isquemia Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , ARN Circular/biosíntesis , ARN Circular/genética , Proteína FUS de Unión a ARN/genética
6.
Tissue Eng Part A ; 23(21-22): 1241-1250, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28471299

RESUMEN

Endothelial progenitor cell (EPC)-based therapy has immense potential to promote cardiac neovascularization and attenuate ischemic injury. Functional benefits of EPCs and other adult stem cell therapies largely involve paracrine mechanisms and exosomes secreted by stem cells are emerging as pivotal paracrine entity of stem/progenitor cells. However, modest outcomes after EPC-/stem cell-based clinical trials suggest that stem cell/exosome function might be modulated by stimuli they encounter in ischemic tissues, including systemic inflammation. We hypothesized that EPCs under inflammatory stress might produce exosomes of altered and dysfunctional content, which may compromise EPC repair in ischemic heart disease. We have previously shown that EPCs obtained from interleukin-10 knockout (IL-10KO) mice (model mimicking systemic inflammation) display impaired angiogenic functions. Whether IL-10KO-EPC-derived exosomes inherit their parental dysfunctional phenotype and whether inflammatory environment alters the cargo of their secreted exosomes are not known. After cell expansion from IL-10KO and wild-type (WT) mice, we isolated exosomes and compared their functions in terms of effect on cell survival, proliferation, migration, and angiogenic capacity in vitro. WT-EPC-Exo treatment enhanced endothelial cell proliferation and tube formation, and inhibited apoptosis, whereas IL-10KO-Exo exhibited impaired or even detrimental effects, suggesting that the reparative capacity of WT-EPC-Exo is lost in exosomes derived from IL-10-KO-EPCs. Deep RNA sequencing and proteomic analyses to compare WT and IL-10KO-Exo revealed drastically altered exosome cargo. Importantly, IL-10KO-EPC-Exo were highly enriched in microRNAs and proteins that promote inflammation and apoptosis and inhibit angiogenesis. Through modulation of a specific enriched miRNA (miR-375), we partially rescued IL-10KO-EPC-Exo dysfunction. Thus, our study revealed that EPC exosomes display impaired function under inflammatory stimulus through changed exosome contents, and the dysfunction can be rescued by modulation of a specific target packed in exosomes.


Asunto(s)
Células de la Médula Ósea/metabolismo , Células Progenitoras Endoteliales/metabolismo , Exosomas/metabolismo , Interleucina-10/deficiencia , Animales , Perfilación de la Expresión Génica , Interleucina-10/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/metabolismo , Fenotipo
7.
Cardiovasc Res ; 113(8): 938-949, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28371849

RESUMEN

AIMS: Increased miR-375 levels has been implicated in rodent models of myocardial infarction (MI) and with patients with heart failure. However, no prior study had established a therapeutic role of miR-375 in ischemic myocardium. Therefore, we assessed whether inhibition of MI-induced miR-375 by LNA anti-miR-375 can improve recovery after acute MI. METHODS AND RESULTS: Ten weeks old mice were treated with either control or LNA anti miR-375 after induction of MI by LAD ligation. The inflammatory response, cardiomyocyte apoptosis, capillary density and left ventricular (LV) functional, and structural remodelling changes were evaluated. Anti-miR-375 therapy significantly decreased inflammatory response and reduced cardiomyocyte apoptosis in the ischemic myocardium and significantly improved LV function and neovascularization and reduced infarct size. Repression of miR-375 led to the activation of 3-phosphoinositide-dependent protein kinase 1 (PDK-1) and increased AKT phosphorylation on Thr-308 in experimental hearts. In corroboration with our in vivo findings, our in vitro studies demonstrated that knockdown of miR-375 in macrophages modulated their phenotype, enhanced PDK-1 levels, and reduced pro-inflammatory cytokines expression following LPS challenge. Further, miR-375 levels were elevated in failing human heart tissue. CONCLUSION: Taken together, our studies demonstrate that anti-miR-375 therapy reduced inflammatory response, decreased cardiomyocyte death, improved LV function, and enhanced angiogenesis by targeting multiple cell types mediated at least in part through PDK-1/AKT signalling mechanisms.


Asunto(s)
Macrófagos/metabolismo , MicroARNs/genética , Infarto del Miocardio/genética , Disfunción Ventricular Izquierda/metabolismo , Remodelación Ventricular/genética , Animales , Movimiento Celular/fisiología , Masculino , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Transducción de Señal , Disfunción Ventricular Izquierda/genética , Función Ventricular Izquierda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA