Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nat Immunol ; 19(12): 1427-1440, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30374131

RESUMEN

Multipotent progenitor cells confirm their T cell-lineage identity in the CD4-CD8- double-negative (DN) pro-T cell DN2 stages, when expression of the essential transcription factor Bcl11b begins. In vivo and in vitro stage-specific deletions globally identified Bcl11b-controlled target genes in pro-T cells. Proteomics analysis revealed that Bcl11b associated with multiple cofactors and that its direct action was needed to recruit those cofactors to selective target sites. Regions near functionally regulated target genes showed enrichment for those sites of Bcl11b-dependent recruitment of cofactors, and deletion of individual cofactors relieved the repression of many genes normally repressed by Bcl11b. Runx1 collaborated with Bcl11b most frequently for both activation and repression. In parallel, Bcl11b indirectly regulated a subset of target genes by a gene network circuit via the transcription inhibitor Id2 (encoded by Id2) and transcription factor PLZF (encoded by Zbtb16); Id2 and Zbtb16 were directly repressed by Bcl11b, and Id2 and PLZF controlled distinct alternative programs. Thus, our study defines the molecular basis of direct and indirect Bcl11b actions that promote T cell identity and block alternative potentials.


Asunto(s)
Linfopoyesis/inmunología , Células Precursoras de Linfocitos T/inmunología , Proteína de la Leucemia Promielocítica con Dedos de Zinc/biosíntesis , Proteínas Represoras/inmunología , Proteínas Supresoras de Tumor/inmunología , Animales , Diferenciación Celular/inmunología , Regulación de la Expresión Génica/inmunología , Proteína 2 Inhibidora de la Diferenciación/biosíntesis , Proteína 2 Inhibidora de la Diferenciación/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Precursoras de Linfocitos T/citología , Proteína de la Leucemia Promielocítica con Dedos de Zinc/inmunología
2.
Nat Immunol ; 17(8): 956-65, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27376470

RESUMEN

During T cell development, multipotent progenitors relinquish competence for other fates and commit to the T cell lineage by turning on Bcl11b, which encodes a transcription factor. To clarify lineage commitment mechanisms, we followed developing T cells at the single-cell level using Bcl11b knock-in fluorescent reporter mice. Notch signaling and Notch-activated transcription factors collaborate to activate Bcl11b expression irrespectively of Notch-dependent proliferation. These inputs work via three distinct, asynchronous mechanisms: an early locus 'poising' function dependent on TCF-1 and GATA-3, a stochastic-permissivity function dependent on Notch signaling, and a separate amplitude-control function dependent on Runx1, a factor already present in multipotent progenitors. Despite their necessity for Bcl11b expression, these inputs act in a stage-specific manner, providing a multitiered mechanism for developmental gene regulation.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Factor de Transcripción GATA3/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Linfopoyesis/genética , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Linfocitos T/fisiología , Proteínas Supresoras de Tumor/metabolismo , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Rastreo Celular , Células Cultivadas , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Factor de Transcripción GATA3/genética , Factor Nuclear 1-alfa del Hepatocito/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Represoras/genética , Transducción de Señal , Análisis de la Célula Individual , Proteínas Supresoras de Tumor/genética
3.
Immunol Rev ; 271(1): 72-97, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27088908

RESUMEN

The pathway to generate T cells from hematopoietic stem cells guides progenitors through a succession of fate choices while balancing differentiation progression against proliferation, stage to stage. Many elements of the regulatory system that controls this process are known, but the requirement for multiple, functionally distinct transcription factors needs clarification in terms of gene network architecture. Here, we compare the features of the T-cell specification system with the rule sets underlying two other influential types of gene network models: first, the combinatorial, hierarchical regulatory systems that generate the orderly, synchronized increases in complexity in most invertebrate embryos; second, the dueling 'master regulator' systems that are commonly used to explain bistability in microbial systems and in many fate choices in terminal differentiation. The T-cell specification process shares certain features with each of these prevalent models but differs from both of them in central respects. The T-cell system is highly combinatorial but also highly dose-sensitive in its use of crucial regulatory factors. The roles of these factors are not always T-lineage-specific, but they balance and modulate each other's activities long before any mutually exclusive silencing occurs. T-cell specification may provide a new hybrid model for gene networks in vertebrate developmental systems.


Asunto(s)
Diferenciación Celular , Hematopoyesis , Células Madre Hematopoyéticas/fisiología , Sistema Inmunológico/embriología , Linfocitos T/fisiología , Animales , Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes/inmunología , Humanos , Sistema Inmunológico/crecimiento & desarrollo , Modelos Biológicos
4.
J Immunol ; 190(7): 3276-88, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23440410

RESUMEN

NOD mice exhibit major defects in the earliest stages of T cell development in the thymus. Genome-wide genetic and transcriptome analyses were used to investigate the origins and consequences of an early T cell developmental checkpoint breakthrough in Rag1-deficient NOD mice. Quantitative trait locus analysis mapped the presence of checkpoint breakthrough cells to several known NOD diabetes susceptibility regions, particularly insulin-dependent diabetes susceptibility genes (Idd)9/11 on chromosome 4, suggesting common genetic origins for T cell defects affecting this trait and autoimmunity. Genome-wide RNA deep-sequencing of NOD and B6 Rag1-deficient thymocytes revealed the effects of genetic background prior to breakthrough, as well as the cellular consequences of the breakthrough. Transcriptome comparison between the two strains showed enrichment in differentially expressed signal transduction genes, prominently tyrosine kinase and actin-binding genes, in accord with their divergent sensitivities to activating signals. Emerging NOD breakthrough cells aberrantly expressed both stem cell-associated proto-oncogenes, such as Lmo2, Hhex, Lyl1, and Kit, which are normally repressed at the commitment checkpoint, and post-ß-selection checkpoint genes, including Cd2 and Cd5. Coexpression of genes characteristic of multipotent progenitors and more mature T cells persists in the expanding population of thymocytes and in the thymic leukemias that emerge with age in these mice. These results show that Rag1-deficient NOD thymocytes have T cell defects that can collapse regulatory boundaries at two early T cell checkpoints, which may predispose them to both leukemia and autoimmunity.


Asunto(s)
Transformación Celular Neoplásica/genética , Proteínas de Homeodominio/genética , Células Precursoras de Linfocitos T/metabolismo , Actinas/metabolismo , Factores de Edad , Animales , Transformación Celular Neoplásica/inmunología , Mapeo Cromosómico , Cromosomas de los Mamíferos , Análisis por Conglomerados , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Linfoma/genética , Linfoma/inmunología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Células Precursoras de Linfocitos T/inmunología , Sitios de Carácter Cuantitativo , Transducción de Señal , Células Madre/metabolismo , Timocitos/inmunología , Timocitos/metabolismo , Transcripción Genética
5.
J Immunol ; 186(2): 826-37, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21148803

RESUMEN

The first TCR-dependent checkpoint in the thymus determines αß versus γδ T lineage fate and sets the stage for later T cell differentiation decisions. We had previously shown that early T cells in NOD mice that are unable to rearrange a TCR exhibit a defect in checkpoint enforcement at this stage. To determine if T cell progenitors from wild-type NOD mice also exhibit cell-autonomous defects in development, we investigated their differentiation in the Notch-ligand-presenting OP9-DL1 coculture system, as well as by analysis of T cell development in vivo. Cultured CD4 and CD8 double-negative cells from NOD mice exhibited major defects in the generation of CD4 and CD8 double-positive αß T cells, whereas γδ T cell development from bipotent precursors was enhanced. Limiting dilution and single-cell experiments show that the divergent effects on αß and γδ T cell development did not spring from biased lineage choice but from increased proliferation of γδ T cells and impaired accumulation of αß T lineage double-positive cells. In vivo, NOD early T cell subsets in the thymus also show characteristics indicative of defective ß-selection, and peripheral αß T cells are poorly established in mixed bone marrow chimeras, contrasting with strong γδ T as well as B cell repopulation. Thus, NOD T cell precursors reveal divergent, lineage-specific differentiation abnormalities in vitro and in vivo from the first TCR-dependent developmental choice point, which may have consequences for subsequent lineage decisions and effector functions.


Asunto(s)
Diferenciación Celular/inmunología , Linaje de la Célula/inmunología , Ratones Endogámicos NOD/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/fisiología , Receptores de Antígenos de Linfocitos T gamma-delta/fisiología , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/inmunología , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Reordenamiento Génico de la Cadena beta de los Receptores de Antígenos de los Linfocitos T/inmunología , Reordenamiento Génico de la Cadena delta de los Receptores de Antígenos de los Linfocitos T/inmunología , Reordenamiento Génico de la Cadena gamma de los Receptores de Antígenos de los Linfocitos T/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD/genética , Ratones Noqueados , Ratones SCID , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Células Madre/citología , Células Madre/inmunología , Células Madre/metabolismo , Subgrupos de Linfocitos T/metabolismo , Timo/citología , Timo/inmunología , Timo/metabolismo
6.
J Immunol ; 185(1): 284-93, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20543111

RESUMEN

T cell development is marked by the loss of alternative lineage choices accompanying specification and commitment to the T cell lineage. Commitment occurs between the CD4 and CD8 double-negative (DN) 2 and DN3 stages in mouse early T cells. To determine the gene regulatory changes that accompany commitment, we sought to distinguish and characterize the earliest committed wild-type DN adult thymocytes. A transitional cell population, defined by the first downregulation of surface c-Kit expression, was found to have lost the ability to differentiate into dendritic cells and NK cells when cultured without Notch-Delta signals. In the presence of Notch signaling, this subset generates T lineage descendants in an ordered precursor-product relationship between DN2, with the highest levels of surface c-Kit, and c-Kit-low DN3 cells. These earliest committed cells show only a few differences in regulatory gene expression, compared with uncommitted DN2 cells. They have not yet established the full expression of Notch-related and T cell differentiation genes characteristic of DN3 cells before beta selection. Instead, the downregulation of select stem cell and non-T lineage genes appears to be key to the extinction of alternative lineage choices.


Asunto(s)
Diferenciación Celular/inmunología , Linaje de la Célula/inmunología , Senescencia Celular/inmunología , Regulación de la Expresión Génica/inmunología , Subgrupos de Linfocitos T/inmunología , Timo/inmunología , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Proliferación Celular , Células Cultivadas , Senescencia Celular/genética , Técnicas de Cocultivo , Regulación hacia Abajo/inmunología , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Transgénicos , Receptor Notch1/genética , Receptor Notch1/fisiología , Células Madre/citología , Células Madre/inmunología , Células Madre/metabolismo , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/metabolismo , Timo/citología , Timo/metabolismo , Regulación hacia Arriba/inmunología
7.
Proc Natl Acad Sci U S A ; 105(51): 20100-5, 2008 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-19104054

RESUMEN

Choice of a T lymphoid fate by hematopoietic progenitor cells depends on sustained Notch-Delta signaling combined with tightly regulated activities of multiple transcription factors. To dissect the regulatory network connections that mediate this process, we have used high-resolution analysis of regulatory gene expression trajectories from the beginning to the end of specification, tests of the short-term Notch dependence of these gene expression changes, and analyses of the effects of overexpression of two essential transcription factors, namely PU.1 and GATA-3. Quantitative expression measurements of >50 transcription factor and marker genes have been used to derive the principal components of regulatory change through which T cell precursors progress from primitive multipotency to T lineage commitment. Our analyses reveal separate contributions of Notch signaling, GATA-3 activity, and down-regulation of PU.1. Using BioTapestry (www.BioTapestry.org), the results have been assembled into a draft gene regulatory network for the specification of T cell precursors and the choice of T as opposed to myeloid/dendritic or mast-cell fates. This network also accommodates effects of E proteins and mutual repression circuits of Gfi1 against Egr-2 and of TCF-1 against PU.1 as proposed elsewhere, but requires additional functions that remain unidentified. Distinctive features of this network structure include the intense dose dependence of GATA-3 effects, the gene-specific modulation of PU.1 activity based on Notch activity, the lack of direct opposition between PU.1 and GATA-3, and the need for a distinct, late-acting repressive function or functions to extinguish stem and progenitor-derived regulatory gene expression.


Asunto(s)
Factor de Transcripción GATA3/genética , Redes Reguladoras de Genes , Linfopoyesis/genética , Proteínas Proto-Oncogénicas/genética , Linfocitos T/citología , Transactivadores/genética , Animales , Regulación de la Expresión Génica , Células Madre Hematopoyéticas/citología , Ratones , Receptores Notch , Factores de Transcripción
8.
Cell Rep ; 34(2): 108622, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33440162

RESUMEN

Intrathymic development of committed progenitor (pro)-T cells from multipotent hematopoietic precursors offers an opportunity to dissect the molecular circuitry establishing cell identity in response to environmental signals. This transition encompasses programmed shutoff of stem/progenitor genes, upregulation of T cell specification genes, proliferation, and ultimately commitment. To explain these features in light of reported cis-acting chromatin effects and experimental kinetic data, we develop a three-level dynamic model of commitment based upon regulation of the commitment-linked gene Bcl11b. The levels are (1) a core gene regulatory network (GRN) architecture from transcription factor (TF) perturbation data, (2) a stochastically controlled chromatin-state gate, and (3) a single-cell proliferation model validated by experimental clonal growth and commitment kinetic assays. Using RNA fluorescence in situ hybridization (FISH) measurements of genes encoding key TFs and measured bulk population dynamics, this single-cell model predicts state-switching kinetics validated by measured clonal proliferation and commitment times. The resulting multi-scale model provides a mechanistic framework for dissecting commitment dynamics.


Asunto(s)
Linaje de la Célula/genética , Células Madre/metabolismo , Linfocitos T/fisiología , Timo/metabolismo , Diferenciación Celular , Humanos
9.
Dev Biol ; 325(2): 444-67, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19013443

RESUMEN

Mammalian T lymphocytes are a prototype for development from adult pluripotent stem cells. While T-cell specification is driven by Notch signaling, T-lineage commitment is only finalized after prolonged Notch activation. However, no T-lineage specific regulatory factor has been reported that mediates commitment. We used a gene-discovery approach to identify additional candidate T-lineage transcription factors and characterized expression of >100 regulatory genes in early T-cell precursors using realtime RT-PCR. These regulatory genes were also monitored in multilineage precursors as they entered T-cell or non-T-cell pathways in vitro; in non-T cells ex vivo; and in later T-cell developmental stages after lineage commitment. At least three major expression patterns were observed. Transcription factors in the largest group are expressed at relatively stable levels throughout T-lineage specification as a legacy from prethymic precursors, with some continuing while others are downregulated after commitment. Another group is highly expressed in the earliest stages only, and is downregulated before or during commitment. Genes in a third group undergo upregulation at one of three distinct transitions, suggesting a positive regulatory cascade. However, the transcription factors induced during commitment are not T-lineage specific. Different members of the same transcription factor family can follow opposite trajectories during specification and commitment, while factors co-expressed early can be expressed in divergent patterns in later T-cell development. Some factors reveal new regulatory distinctions between alphabeta and gammadelta T-lineage differentiation. These results show that T-cell identity has an essentially complex regulatory basis and provide a detailed framework for regulatory network modeling of T-cell specification.


Asunto(s)
Linfocitos T/citología , Factores de Transcripción/biosíntesis , Animales , Diferenciación Celular , Linaje de la Célula , Proteínas de Unión al ADN/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Linfocitos T/inmunología , Factores de Transcripción/genética
10.
Leukemia ; 34(5): 1241-1252, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31772299

RESUMEN

Timed degradation of the cyclin-dependent kinase inhibitor p27Kip1 by the E3 ubiquitin ligase F-box protein SKP2 is critical for T-cell progression into cell cycle, coordinating proliferation and differentiation processes. SKP2 expression is regulated by mitogenic stimuli and by Notch signaling, a key pathway in T-cell development and in T-cell acute lymphoblastic leukemia (T-ALL); however, it is not known whether SKP2 plays a role in the development of T-ALL. Here, we determined that SKP2 function is relevant for T-ALL leukemogenesis, whereas is dispensable for T-cell development. Targeted inhibition of SKP2 by genetic deletion or pharmacological blockade markedly inhibited proliferation of human T-ALL cells in vitro and antagonized disease in vivo in murine and xenograft leukemia models, with little effect on normal tissues. We also demonstrate a novel feed forward feedback loop by which Notch and IL-7 signaling cooperatively converge on SKP2 induction and cell cycle activation. These studies show that the Notch/SKP2/p27Kip1 pathway plays a unique role in T-ALL development and provide a proof-of-concept for the use of SKP2 as a new therapeutic target in T-cell acute lymphoblastic leukemia (T-ALL).


Asunto(s)
Apoptosis , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas Asociadas a Fase-S/antagonistas & inhibidores , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Proteínas Quinasas Asociadas a Fase-S/fisiología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA