Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(4): e202312292, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37932823

RESUMEN

Converting CO2 into methanol on a large scale is of great significance in the sustainable methanol economy. Zirconia species are considered to be an essential support in Cu-based catalysts due to their excellent properties for CO2 adsorption and activation. However, the evolution of Zr species during the reaction and the effect of their structure on the reaction pathways remain unclear. Herein, single-site Zr species in an amorphous SiO2 matrix are created by enhancing the Zr-Si interaction in Cu/ZrO2 -SiO2 catalysts. In situ X-ray absorption spectroscopy (XAS) reveals that the coordination environment of single-site Zr is sensitive to the atmosphere and reaction conditions. We demonstrate that the CO2 adsorption occurs preferably on the interface of Cu and single-site Zr rather than on ZrO2 nanoparticles. Methanol synthesis in reverse water-gas-shift (RWGS)+CO-hydro pathway is verified only over single-dispersed Zr sites, whereas the ordinary formate pathway occurs on ZrO2 nanoparticles. Thus, it expands a non-competitive parallel pathway as a supplement to the dominant formate pathway, resulting in the enhancement of Cu activity sixfold and twofold based on Cu/SiO2 and Cu/ZrO2 catalysts, respectively. The establishment of this dual-channel pathway by single-site Zr species in this work opens new horizons for understanding the role of atomically dispersed oxides in catalysis science.

2.
ChemSusChem ; : e202401846, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356246

RESUMEN

Catalytic CO2 conversion to methanol is a promising way to extenuate the adverse effects of CO2 emission, global warming and energy shortage. Understanding the fundamental features of CO2 activation and hydrogenation at the molecular level is essential for carbon utilization and sustainable chemical production in the current climate crisis. This review explores the recent advances in understanding the design of catalysts with desired active sites, including single-atom, dual-atom, interface, defects/vacancies and promoters/dopants. We focused on the design of various catalytic systems to enhance their catalytic performances by stabilizing active metal in a catalyst, identifying the unique structure of active species, and engineering coordination environments of active sites. Mechanistic insights provided by advanced operando and in situ spectroscopies were also discussed. Moreover, the review highlights the key factors affecting active sites and reaction mechanisms, such as local environments, oxidation states, and metal-support interactions. By integrating recent advancements and relating knowledge gaps this review aims to endow an inclusive overview of the field and guide future research toward more efficient and selective catalysts for CO2 hydrogenation to methanol.

3.
ChemSusChem ; : e202401427, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268758

RESUMEN

Mo carbide is recognized as one of the most promising catalyst for CO2 utilization via reverse water-gas shift (RWGS). However, it always suffered from low processing capacity, undesired products and deactivation. Herein, an Ir modified MoO3 synthesized by the flame spray pyrolysis (FSP) method exhibits higher reaction rate (63.0 gCO2·gcat-1·h-1) compared to the one made by traditional impregnation method (45.8 gCO2·gcat-1·h-1) over the RWGS reaction at 600°C. The distinguishing feature between the two catalysts lies in the chemical state and space distribution of Ir species. Ir species predominated in the bulk phase of MoO3 during the quenching process of the FSP method and were mainly in the metallic states, which revealed by X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) characterizations. In contrast, the Ir introduced via impregnation method were mainly on the surface of MoO3 and in oxidized state. The regulation of Ir dopant in MoO3 catalyst by different methods determines the carbonization process to Mo carbides, and thus affects the catalytic performance. This work sheds light on the superiority of the FSP method in synthesizing Mo oxides with heteroatoms and further creating an efficient Mo-based catalyst for CO2 conversion.

4.
Nat Chem ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251842

RESUMEN

Sustainable CO2 conversion is crucial in curbing excess emissions. Molybdenum carbide catalysts have demonstrated excellent performances for catalytic CO2 conversion, but harsh carburization syntheses and poor stabilities make studies challenging. Here an unsaturated Mo oxide (Mo17O47) shows a high activity for the reverse water-gas shift reaction, without carburization pretreatments, and remains stable for 2,000 h at 600 °C. Flame spray pyrolysis synthesis and Ir promoter facilitate the formation of Mo17O47 and its in situ carburization during reaction. The reaction-induced cubic α-MoC with unsaturated Mo oxycarbide (MoOxCy) on the surface serves as the active sites that are crucial for catalysis. Mechanistic studies indicate that the C atom in CO2 inserts itself in the vacancy between two Mo atoms, and releases CO by taking another C atom from the oxycarbide to regenerate the vacancy, following a carbon cycle pathway. The design of Mo catalysts with unsaturated oxycarbide active sites affords new territory for high-temperature applications and provides alternative pathways for CO2 conversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA