Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 28(13): 2212-2223, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31220269

RESUMEN

Alström syndrome (OMIM #203800) is an autosomal recessive obesity ciliopathy caused by loss-of-function mutations in the ALMS1 gene. In addition to multi-organ dysfunction, such as cardiomyopathy, retinal degeneration and renal dysfunction, the disorder is characterized by high rates of obesity, insulin resistance and early-onset type 2 diabetes mellitus (T2DM). To investigate the underlying mechanisms of T2DM phenotypes, we generated a loss-of-function deletion of alms1 in the zebrafish. We demonstrate conservation of hallmark clinical characteristics alongside metabolic syndrome phenotypes, including a propensity for obesity and fatty livers, hyperinsulinemia and glucose response defects. Gene expression changes in ß-cells isolated from alms1-/- mutants revealed changes consistent with insulin hypersecretion and glucose sensing failure, which were corroborated in cultured murine ß-cells lacking Alms1. We also found evidence of defects in peripheral glucose uptake and concomitant hyperinsulinemia in the alms1-/- animals. We propose a model in which hyperinsulinemia is the primary and causative defect underlying generation of T2DM associated with alms1 deficiency. These observations support the alms1 loss-of-function zebrafish mutant as a monogenic model for mechanistic interrogation of T2DM phenotypes.


Asunto(s)
Síndrome de Alstrom/genética , Diabetes Mellitus Tipo 2/genética , Resistencia a la Insulina/genética , Insuficiencia Renal/genética , Degeneración Retiniana/genética , Pez Cebra/genética , Síndrome de Alstrom/fisiopatología , Animales , Animales Modificados Genéticamente , Línea Celular , Modelos Animales de Enfermedad , Intolerancia a la Glucosa , Hiperinsulinismo/genética , Células Secretoras de Insulina/metabolismo , Ratones , Modelos Biológicos , Obesidad/genética , Fenotipo , Pez Cebra/embriología
2.
Circulation ; 138(13): 1343-1355, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-29593015

RESUMEN

BACKGROUND: Elevated levels of low-density lipoprotein cholesterol (LDL-C) are a major risk factor for cardiovascular disease via its contribution to the development and progression of atherosclerotic lesions. Although the genetic basis of LDL-C has been studied extensively, currently known genetic variants account for only ≈20% of the variation in LDL-C levels. METHODS: Through an array-based association analysis in 1102 Amish subjects, we identified a variant strongly associated with LDL-C levels. Using a combination of genetic analyses, zebrafish models, and in vitro experiments, we sought to identify the causal gene driving this association. RESULTS: We identified a founder haplotype associated with a 15 mg/dL increase in LDL-C on chromosome 5. After recombination mapping, the associated region contained 8 candidate genes. Using a zebrafish model to evaluate the relevance of these genes to cholesterol metabolism, we found that expression of the transcribed pseudogene, APOOP1, increased LDL-C and vascular plaque formation. CONCLUSIONS: Based on these data, we propose that APOOP1 regulates levels of LDL-C in humans, thus identifying a novel mechanism of lipid homeostasis.


Asunto(s)
Amish/genética , Aterosclerosis/genética , LDL-Colesterol/sangre , Cromosomas Humanos Par 5 , Dislipidemias/genética , Seudogenes , Animales , Animales Modificados Genéticamente , Aterosclerosis/sangre , Aterosclerosis/diagnóstico , Aterosclerosis/etnología , Dislipidemias/sangre , Dislipidemias/diagnóstico , Dislipidemias/etnología , Efecto Fundador , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Haplotipos , Humanos , Fenotipo , Recombinación Genética , Factores de Riesgo , Pez Cebra/genética
3.
Hum Mol Genet ; 25(1): 57-68, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26494903

RESUMEN

Rare genetic syndromes characterized by early-onset type 2 diabetes have revealed the importance of pancreatic ß-cells in genetic susceptibility to diabetes. However, the role of genetic regulation of ß-cells in disorders that are also characterized by highly penetrant obesity, a major additional risk factor, is unclear. In this study, we investigated the contribution of genes associated with two obesity ciliopathies, Bardet-Biedl Syndrome and Alstrom Syndrome, to the production and maintenance of pancreatic ß-cells. Using zebrafish models of these syndromes, we identified opposing effects on production of ß-cells. Loss of the Alstrom gene, alms1, resulted in a significant decrease in ß-cell production whereas loss of BBS genes, bbs1 or bbs4, resulted in a significant increase. Examination of the regulatory program underlying ß-cell production suggested that these effects were specific to ß-cells. In addition to the initial production of ß-cells, we observed significant differences in their continued maintenance. Under prolonged exposure to high glucose conditions, alms1-deficient ß-cells were unable to continually expand as a result of decreased proliferation and increased cell death. Although bbs1-deficient ß-cells were similarly susceptible to apoptosis, the overall maintenance of ß-cell number in those animals was sustained likely due to increased proliferation. Taken together, these findings implicate discrepant production and maintenance of ß-cells in the differential susceptibility to diabetes found between these two genetic syndromes.


Asunto(s)
Síndrome de Alstrom/genética , Síndrome de Bardet-Biedl/genética , Células Secretoras de Insulina/patología , Animales , Muerte Celular , Proliferación Celular , Modelos Animales de Enfermedad , Glucosa , Hiperglucemia/patología , Proteínas Asociadas a Microtúbulos/genética , Morfolinos/genética , Pez Cebra , Proteínas de Pez Cebra/genética
4.
Hepatology ; 65(5): 1526-1542, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28027591

RESUMEN

The transmembrane 6 superfamily member 2 (TM6SF2) loss-of-function variant rs58542926 is a genetic risk factor for nonalcoholic fatty liver disease and progression to fibrosis but is paradoxically associated with lower levels of hepatically derived triglyceride-rich lipoproteins. TM6SF2 is expressed predominantly in liver and small intestine, sites for triglyceride-rich lipoprotein biogenesis and export. In light of this, we hypothesized that TM6SF2 may exhibit analogous effects on both liver and intestine lipid homeostasis. To test this, we genotyped rs58542926 in 983 bariatric surgery patients from the Geisinger Medical Center for Nutrition and Weight Management, Geisinger Health System, in Pennsylvania and from 3,556 study participants enrolled in the Amish Complex Disease Research Program. Although these two cohorts have different metabolic profiles, carriers in both cohorts had improved fasting lipid profiles. Importantly, following a high-fat challenge, carriers in the Amish Complex Disease Research Program cohort exhibited significantly lower postprandial serum triglycerides, suggestive of a role for TM6SF2 in the small intestine. To gain further insight into this putative role, effects of TM6SF2 deficiency were studied in a zebrafish model and in cultured human Caco-2 enterocytes. In both systems TM6SF2 deficiency resulted in defects in small intestine metabolism in response to dietary lipids, including significantly increased lipid accumulation, decreased lipid clearance, and increased endoplasmic reticulum stress. CONCLUSIONS: These data strongly support a role of TM6SF2 in the regulation of postprandial lipemia, potentially through a similar function for TM6SF2 in the lipidation and/or export of both hepatically and intestinally derived triglyceride-rich lipoproteins. (Hepatology 2017;65:1526-1542).


Asunto(s)
Estrés del Retículo Endoplásmico , Intestino Delgado/metabolismo , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Proteínas de la Membrana/genética , Animales , Secuencia de Bases , Células CACO-2 , Enterocitos/metabolismo , Hígado Graso/genética , Femenino , Hepatocitos/metabolismo , Homeostasis , Humanos , Intestino Delgado/ultraestructura , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Persona de Mediana Edad , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Periodo Posprandial , Triglicéridos/biosíntesis , Triglicéridos/sangre , Tunicamicina , Pez Cebra
5.
Clin Transplant ; 31(9)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28636211

RESUMEN

INTRODUCTION: Transplant surgeons conventionally select against livers displaying high degrees (>30%) of macrosteatosis (MaS), out of concern for primary non-function or severe graft dysfunction. As such, there is relatively limited experience with such livers, and the natural history remains incompletely characterized. We present our experience of transplanted livers with high degrees of MaS and microsteatosis (MiS), with a focus on the histopathologic and clinical outcomes. METHODS: Twenty-nine cases were identified with liver biopsies available from both the donor and the corresponding liver transplant recipient. Donor liver biopsies displayed either MaS or MiS ≥15%, while all recipients received postoperative liver biopsies for cause. RESULTS: The mean donor MaS and MiS were 15.6% (range 0%-60%) and 41.3% (7.5%-97.5%), respectively. MaS decreased significantly from donor (M=15.6%) to recipient postoperative biopsies (M=0.86%), P<.001. Similarly, MiS decreased significantly from donor biopsies (M=41.3%) to recipient postoperative biopsies (M=1.8%), P<.001. At a median of 68 days postoperatively (range 4-384), full resolution of MaS and MiS was observed in 27 of 29 recipients. CONCLUSIONS: High degrees of MaS and MiS in donor livers resolve in recipients following liver transplantation. Further insight into the mechanisms responsible for treating fatty liver diseases could translate into therapeutic targets.


Asunto(s)
Selección de Donante , Hepatectomía , Trasplante de Hígado , Donadores Vivos , Enfermedad del Hígado Graso no Alcohólico/cirugía , Adulto , Anciano , Biopsia , Femenino , Humanos , Hígado/patología , Hígado/cirugía , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/patología , Evaluación de Resultado en la Atención de Salud , Estudios Retrospectivos , Trasplante Homólogo
6.
BMC Genomics ; 17: 318, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27142762

RESUMEN

BACKGROUND: Bardet-Biedl Syndrome (BBS) and Alström Syndrome are two pleiotropic ciliopathies with significant phenotypic overlap between them across many tissues. Although BBS and Alström genes are necessary for the proper function of primary cilia, their role in defects across multiple organ systems is unclear. METHODS: To provide insight into the pathways underlying BBS and Alström phenotypes, we carried out whole organism transcriptome analysis by RNA sequencing in established zebrafish models of the syndromes. RESULTS: We analyzed all genes that were significantly differentially expressed and found enrichment of phenotypically significant pathways in both models. These included multiple pathways shared between the two disease models as well as those unique to each model. Notably, we identified significant downregulation of genes in pathways relevant to visual system deficits and obesity in both disorders, consistent with those shared phenotypes. In contrast, neuronal pathways were significantly downregulated only in the BBS model but not in the Alström model. Our observations also suggested an important role for G-protein couple receptor and calcium signaling defects in both models. DISCUSSION: Pathway network analyses of both models indicate that visual system defects may be driven by genetic mechanisms independent of other phenotypes whereas the majority of other phenotypes are a result of genetic players that contribute to multiple pathways simultaneously. Additionally, examination of genes differentially expressed in opposing directions between the two models suggest a deficit in pancreatic function in the Alström model, that is not present in the BBS model. CONCLUSIONS: These findings provide important novel insight into shared and divergent phenotypes between two similar but distinct genetic syndromes.


Asunto(s)
Síndrome de Alstrom/genética , Síndrome de Bardet-Biedl/genética , Perfilación de la Expresión Génica , Fenotipo , Transcriptoma , Pez Cebra/genética , Síndrome de Alstrom/diagnóstico , Animales , Síndrome de Bardet-Biedl/diagnóstico , Biología Computacional/métodos , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Fototransducción , Vías Nerviosas , Vías Visuales
7.
J Cell Sci ; 127(Pt 11): 2407-19, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24681783

RESUMEN

Proteins associated with primary cilia and basal bodies mediate numerous signaling pathways, but little is known about their role in Notch signaling. Here, we report that loss of the Bardet-Biedl syndrome proteins BBS1 or BBS4 produces increased Notch-directed transcription in a zebrafish reporter line and in human cell lines. Pathway overactivation is accompanied by reduced localization of Notch receptor at both the plasma membrane and the cilium. In Drosophila mutants, overactivation of Notch can result from receptor accumulation in endosomes, and recent studies implicate ciliary proteins in endosomal trafficking, suggesting a possible mechanism by which overactivation occurs in BBS mutants. Consistent with this, we observe genetic interaction of BBS1 and BBS4 with the endosomal sorting complexes required for transport (ESCRT) gene TSG101 and accumulation of receptor in late endosomes, reduced endosomal recycling and reduced receptor degradation in lysosomes. We observe similar defects with disruption of BBS3. Loss of another basal body protein, ALMS1, also enhances Notch activation and the accumulation of receptor in late endosomes, but does not disrupt recycling. These findings suggest a role for these proteins in the regulation of Notch through endosomal trafficking of the receptor.


Asunto(s)
Cuerpos Basales/fisiología , Membrana Celular/metabolismo , Cilios/fisiología , Endosomas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas/metabolismo , Receptores Notch/metabolismo , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Animales , Proteínas de Ciclo Celular , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/genética , Mutación/genética , Transporte de Proteínas/genética , Proteínas/genética , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra
8.
Birth Defects Res C Embryo Today ; 102(2): 139-58, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24864023

RESUMEN

Primary cilia and their anchoring basal bodies are important regulators of a growing list of signaling pathways. Consequently, dysfunction in proteins associated with these structures results in perturbation of the development and function of a spectrum of tissue and cell types. Here, we review the role of cilia in mediating the development and function of the pancreas. We focus on ciliary regulation of major pathways involved in pancreatic development, including Shh, Wnt, TGF-ß, Notch, and fibroblast growth factor. We also discuss pancreatic phenotypes associated with ciliary dysfunction, including pancreatic cysts and defects in glucose homeostasis, and explore the potential role of cilia in such defects.


Asunto(s)
Cilios/patología , Organogénesis/genética , Páncreas/patología , Animales , Modelos Animales de Enfermedad , Trastornos del Metabolismo de la Glucosa/genética , Trastornos del Metabolismo de la Glucosa/patología , Humanos , Páncreas/citología , Páncreas/metabolismo , Quiste Pancreático/genética , Quiste Pancreático/patología , Fenotipo , Transducción de Señal
9.
J Lipid Res ; 55(11): 2242-53, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25201834

RESUMEN

Hyperlipidemia and arterial cholesterol accumulation are primary causes of cardiovascular events. Monogenic forms of hyperlipidemia and recent genome-wide association studies indicate that genetics plays an important role. Zebrafish are a useful model for studying the genetic susceptibility to hyperlipidemia owing to conservation of many components of lipoprotein metabolism, including those related to LDL, ease of genetic manipulation, and in vivo observation of lipid transport and vascular calcification. We sought to develop a genetic model for lipid metabolism in zebrafish, capitalizing on one well-understood player in LDL cholesterol (LDL-c) transport, the LDL receptor (ldlr), and an established in vivo model of hypercholesterolemia. We report that morpholinos targeted against the gene encoding ldlr effectively suppressed its expression in embryos during the first 8 days of development. The ldlr morphants exhibited increased LDL-c levels that were exacerbated by feeding a high cholesterol diet. Increased LDL-c was ameliorated in morphants upon treatment with atorvastatin. Furthermore, we observed significant vascular and liver lipid accumulation, vascular leakage, and plaque oxidation in ldlr-deficient embryos. Finally, upon transcript analysis of several cholesterol-regulating genes, we observed changes similar to those seen in mammalian systems, suggesting that cholesterol regulation may be conserved in zebrafish. Taken together, these observations indicate conservation of ldlr function in zebrafish and demonstrate the utility of transient gene knockdown in embryos as a genetic model for hyperlipidemia.


Asunto(s)
Vasos Sanguíneos/metabolismo , LDL-Colesterol/metabolismo , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Receptores de LDL/deficiencia , Receptores de LDL/genética , Pez Cebra , Animales , Atorvastatina , Secuencia de Bases , Vasos Sanguíneos/efectos de los fármacos , Modelos Animales de Enfermedad , Embrión no Mamífero , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Hepatomegalia/complicaciones , Ácidos Heptanoicos/farmacología , Hipercolesterolemia/complicaciones , Hígado/efectos de los fármacos , Hígado/metabolismo , Datos de Secuencia Molecular , Morfolinos/genética , Oxidación-Reducción/efectos de los fármacos , Pirroles/farmacología , Venas/efectos de los fármacos , Venas/metabolismo
10.
Am J Hum Genet ; 89(1): 94-110, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21763481

RESUMEN

Nearly every ciliated organism possesses three B9 domain-containing proteins: MKS1, B9D1, and B9D2. Mutations in human MKS1 cause Meckel syndrome (MKS), a severe ciliopathy characterized by occipital encephalocele, liver ductal plate malformations, polydactyly, and kidney cysts. Mouse mutations in either Mks1 or B9d2 compromise ciliogenesis and result in phenotypes similar to those of MKS. Given the importance of these two B9 proteins to ciliogenesis, we examined the role of the third B9 protein, B9d1. Mice lacking B9d1 displayed polydactyly, kidney cysts, ductal plate malformations, and abnormal patterning of the neural tube, concomitant with compromised ciliogenesis, ciliary protein localization, and Hedgehog (Hh) signal transduction. These data prompted us to screen MKS patients for mutations in B9D1 and B9D2. We identified a homozygous c.301A>C (p.Ser101Arg) B9D2 mutation that segregates with MKS, affects an evolutionarily conserved residue, and is absent from controls. Unlike wild-type B9D2 mRNA, the p.Ser101Arg mutation failed to rescue zebrafish phenotypes induced by the suppression of b9d2. With coimmunoprecipitation and mass spectrometric analyses, we found that Mks1, B9d1, and B9d2 interact physically, but that the p.Ser101Arg mutation abrogates the ability of B9d2 to interact with Mks1, further suggesting that the mutation compromises B9d2 function. Our data indicate that B9d1 is required for normal Hh signaling, ciliogenesis, and ciliary protein localization and that B9d1 and B9d2 are essential components of a B9 protein complex, disruption of which causes MKS.


Asunto(s)
Trastornos de la Motilidad Ciliar/genética , Encefalocele/genética , Enfermedades Renales Poliquísticas/genética , Proteínas/genética , Secuencia de Aminoácidos , Animales , Análisis Mutacional de ADN , Ligamiento Genético , Homocigoto , Humanos , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Mutación , Células 3T3 NIH , Tubo Neural/anomalías , Fenotipo , Polidactilia/genética , Transporte de Proteínas/genética , Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Retinitis Pigmentosa , Transducción de Señal , Pez Cebra/genética
11.
Trends Genet ; 26(4): 168-76, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20226561

RESUMEN

The ability to generate a massive amount of sequencing and genotyping data is transforming the study of human genetic disorders. Driven by such innovation, it is likely that whole exome and whole-genome resequencing will replace regionally focused approaches for gene discovery and clinical testing in the next few years. However, this opportunity brings a significant interpretative challenge to assigning function and phenotypic variance to common and rare alleles. Understanding the effect of individual mutations in the context of the remaining genomic variation represents a major challenge to our interpretation of disease. Here, we discuss the challenges of assigning mutation functionality and, drawing from the examples of ciliopathies as well as cohesinopathies and channelopathies, discuss possibilities for the functional modularization of the human genome. Functional modularization in addition to the development of physiologically relevant assays to test allele functionality will accelerate our understanding of disease architecture and enable the use of genome-wide sequence data for disease diagnosis and phenotypic prediction in individuals.


Asunto(s)
Enfermedad/genética , Mutación , Animales , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos
12.
Am J Hum Genet ; 86(1): 45-53, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20036349

RESUMEN

Fuchs corneal dystrophy (FCD) is a degenerative genetic disorder of the corneal endothelium that represents one of the most common causes of corneal transplantation in the United States. Despite its high prevalence (4% over the age of 40), the underlying genetic basis of FCD is largely unknown. Here we report missense mutations in TCF8, a transcription factor whose haploinsufficiency causes posterior polymorphous corneal dystrophy (PPCD), in a cohort of late-onset FCD patients. In contrast to PPCD-causing mutations, all of which are null, FCD-associated mutations encode rare missense changes suggested to cause loss of function by an in vivo complementation assay. Importantly, segregation of a recurring p.Q840P mutation in a large, multigenerational FCD pedigree showed this allele to be sufficient but not necessary for pathogenesis. Execution of a genome-wide scan conditioned for the presence of the 840P allele identified an additional late-onset FCD locus on chromosome 9p, whereas haplotype analysis indicated that the presence of the TCF8 allele and the disease haplotype on 9p leads to a severe FCD manifestation with poor prognosis. Our data suggest that PPCD and FCD are allelic variants of the same disease continuum and that genetic interaction between genes that cause corneal dystrophies can modulate the expressivity of the phenotype.


Asunto(s)
Cromosomas Humanos Par 9/genética , Distrofias Hereditarias de la Córnea/genética , Distrofia Endotelial de Fuchs/genética , Proteínas de Homeodominio/genética , Mutación Missense , Factores de Transcripción/genética , Adulto , Edad de Inicio , Anciano , Alelos , Análisis Mutacional de ADN , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
13.
Proc Natl Acad Sci U S A ; 107(23): 10602-7, 2010 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-20498079

RESUMEN

Technological advances hold the promise of rapidly catalyzing the discovery of pathogenic variants for genetic disease. However, this possibility is tempered by limitations in interpreting the functional consequences of genetic variation at candidate loci. Here, we present a systematic approach, grounded on physiologically relevant assays, to evaluate the mutational content (125 alleles) of the 14 genes associated with Bardet-Biedl syndrome (BBS). A combination of in vivo assays with subsequent in vitro validation suggests that a significant fraction of BBS-associated mutations have a dominant-negative mode of action. Moreover, we find that a subset of common alleles, previously considered to be benign, are, in fact, detrimental to protein function and can interact with strong rare alleles to modulate disease presentation. These data represent a comprehensive evaluation of genetic load in a multilocus disease. Importantly, superimposition of these results to human genetics data suggests a previously underappreciated complexity in disease architecture that might be shared among diverse clinical phenotypes.


Asunto(s)
Síndrome de Bardet-Biedl/genética , Mutación , Alelos , Animales , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Modelos Animales , Linaje , Fenotipo , Pez Cebra/embriología , Pez Cebra/genética
14.
Diabetes ; 72(4): 433-448, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36940317

RESUMEN

The Integrated Physiology of the Exocrine and Endocrine Compartments in Pancreatic Diseases workshop was a 1.5-day scientific conference at the National Institutes of Health (Bethesda, MD) that engaged clinical and basic science investigators interested in diseases of the pancreas. This report provides a summary of the proceedings from the workshop. The goals of the workshop were to forge connections and identify gaps in knowledge that could guide future research directions. Presentations were segregated into six major theme areas, including 1) pancreas anatomy and physiology, 2) diabetes in the setting of exocrine disease, 3) metabolic influences on the exocrine pancreas, 4) genetic drivers of pancreatic diseases, 5) tools for integrated pancreatic analysis, and 6) implications of exocrine-endocrine cross talk. For each theme, multiple presentations were followed by panel discussions on specific topics relevant to each area of research; these are summarized here. Significantly, the discussions resulted in the identification of research gaps and opportunities for the field to address. In general, it was concluded that as a pancreas research community, we must more thoughtfully integrate our current knowledge of normal physiology as well as the disease mechanisms that underlie endocrine and exocrine disorders so that there is a better understanding of the interplay between these compartments.


Asunto(s)
Diabetes Mellitus , Islotes Pancreáticos , Páncreas Exocrino , Enfermedades Pancreáticas , Humanos , Diabetes Mellitus/metabolismo , Páncreas , Enfermedades Pancreáticas/metabolismo
15.
Cell Metab ; 35(4): 695-710.e6, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36963395

RESUMEN

Associations between human genetic variation and clinical phenotypes have become a foundation of biomedical research. Most repositories of these data seek to be disease-agnostic and therefore lack disease-focused views. The Type 2 Diabetes Knowledge Portal (T2DKP) is a public resource of genetic datasets and genomic annotations dedicated to type 2 diabetes (T2D) and related traits. Here, we seek to make the T2DKP more accessible to prospective users and more useful to existing users. First, we evaluate the T2DKP's comprehensiveness by comparing its datasets with those of other repositories. Second, we describe how researchers unfamiliar with human genetic data can begin using and correctly interpreting them via the T2DKP. Third, we describe how existing users can extend their current workflows to use the full suite of tools offered by the T2DKP. We finally discuss the lessons offered by the T2DKP toward the goal of democratizing access to complex disease genetic results.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Acceso a la Información , Estudios Prospectivos , Genómica/métodos , Fenotipo
16.
Proc Natl Acad Sci U S A ; 106(33): 13921-6, 2009 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-19666486

RESUMEN

Hirschsprung disease (HSCR) is a common, multigenic neurocristopathy characterized by incomplete innervation along a variable length of the gut. The pivotal gene in isolated HSCR cases, either sporadic or familial, is RET. HSCR also presents in various syndromes, including Shah-Waardenburg syndrome (WS), Down (DS), and Bardet-Biedl (BBS). Here, we report 3 families with BBS and HSCR with concomitant mutations in BBS genes and regulatory RET elements, whose functionality is tested in physiologically relevant assays. Our data suggest that BBS mutations can potentiate HSCR predisposing RET alleles, which by themselves are insufficient to cause disease. We also demonstrate that these genes interact genetically in vivo to modulate gut innervation, and that this interaction likely occurs through complementary, yet independent, pathways that converge on the same biological process.


Asunto(s)
Epistasis Genética , Enfermedad de Hirschsprung/genética , Mutación , Proteínas/genética , Proteínas Proto-Oncogénicas c-ret/genética , Estómago/inervación , Alelos , Citoplasma/metabolismo , Elementos de Facilitación Genéticos , Salud de la Familia , Femenino , Genotipo , Humanos , Masculino , Proteínas Asociadas a Microtúbulos , Linaje
17.
Pancreas ; 51(9): 1061-1073, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37078927

RESUMEN

ABSTRACT: The "Integrated Physiology of the Exocrine and Endocrine Compartments in Pancreatic Diseases" Workshop was a 1.5-day scientific conference at the National Institutes of Health (Bethesda, MD) that engaged clinical and basic science investigators interested in diseases of the pancreas. This report summarizes the workshop proceedings. The goal of the workshop was to forge connections and identify gaps in knowledge that could guide future research directions. Presentations were segregated into 6 major themes, including (a) Pancreas Anatomy and Physiology; (b) Diabetes in the Setting of Exocrine Disease; (c) Metabolic Influences on the Exocrine Pancreas; (d) Genetic Drivers of Pancreatic Diseases; (e) Tools for Integrated Pancreatic Analysis; and (f) Implications of Exocrine-Endocrine Crosstalk. For each theme, there were multiple presentations followed by panel discussions on specific topics relevant to each area of research; these are summarized herein. Significantly, the discussions resulted in the identification of research gaps and opportunities for the field to address. In general, it was concluded that as a pancreas research community, we must more thoughtfully integrate our current knowledge of the normal physiology as well as the disease mechanisms that underlie endocrine and exocrine disorders so that there is a better understanding of the interplay between these compartments.


Asunto(s)
Diabetes Mellitus , Islotes Pancreáticos , Páncreas Exocrino , Enfermedades Pancreáticas , Humanos , Diabetes Mellitus/terapia , Diabetes Mellitus/metabolismo , Islotes Pancreáticos/metabolismo , Páncreas/metabolismo , Páncreas Exocrino/metabolismo , Enfermedades Pancreáticas/diagnóstico , Enfermedades Pancreáticas/terapia , Enfermedades Pancreáticas/metabolismo
18.
Genesis ; 49(4): 231-46, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21305689

RESUMEN

Primary cilia are microtubule-based organelles that serve as hubs for the transduction of various developmental signaling pathways including Hedgehog, Wnt, FGF, and PDGF. Ciliary dysfunction contributes to a range of disorders, collectively known as the ciliopathies. Recently, interest has grown in these syndromes, particularly among craniofacial biologists, as many known and putative ciliopathies have severe craniofacial defects. Herein we discuss the current understanding of ciliary biology and craniofacial development in an attempt to gain insight into the molecular etiology for craniofacial ciliopathies, and uncover a characteristic ciliopathic craniofacial gestalt.


Asunto(s)
Cilios/fisiología , Anomalías Craneofaciales/etiología , Anomalías Craneofaciales/patología , Desarrollo Maxilofacial/fisiología , Fenotipo , Transducción de Señal/fisiología , Cráneo/embriología , Cilios/patología , Ectodermo/embriología , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Cresta Neural/fisiología , Placa Neural/embriología , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteínas Wnt/metabolismo
19.
PLoS Genet ; 4(3): e1000044, 2008 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-18369462

RESUMEN

MIP-T3 is a human protein found previously to associate with microtubules and the kinesin-interacting neuronal protein DISC1 (Disrupted-in-Schizophrenia 1), but whose cellular function(s) remains unknown. Here we demonstrate that the C. elegans MIP-T3 ortholog DYF-11 is an intraflagellar transport (IFT) protein that plays a critical role in assembling functional kinesin motor-IFT particle complexes. We have cloned a loss of function dyf-11 mutant in which several key components of the IFT machinery, including Kinesin-II, as well as IFT subcomplex A and B proteins, fail to enter ciliary axonemes and/or mislocalize, resulting in compromised ciliary structures and sensory functions, and abnormal lipid accumulation. Analyses in different mutant backgrounds further suggest that DYF-11 functions as a novel component of IFT subcomplex B. Consistent with an evolutionarily conserved cilia-associated role, mammalian MIP-T3 localizes to basal bodies and cilia, and zebrafish mipt3 functions synergistically with the Bardet-Biedl syndrome protein Bbs4 to ensure proper gastrulation, a key cilium- and basal body-dependent developmental process. Our findings therefore implicate MIP-T3 in a previously unknown but critical role in cilium biogenesis and further highlight the emerging role of this organelle in vertebrate development.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Flagelos/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Transporte Biológico Activo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Cilios/fisiología , Cartilla de ADN/genética , ADN de Helmintos/genética , Genes de Helminto , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/fisiología , Morfogénesis , Complejos Multiproteicos , Mutación , Neuronas Aferentes/fisiología , Fenotipo , Transducción de Señal
20.
Biol Open ; 10(6)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34125181

RESUMEN

Pancreatic ß-cells are a critical cell type in the pathology of diabetes. Models of genetic syndromes featuring diabetes can provide novel mechanistic insights into regulation of ß-cells in the context of disease. We previously examined ß-cell mass in models of two ciliopathies, Alström Syndrome (AS) and Bardet-Biedl Syndrome (BBS), which are similar in the presence of metabolic phenotypes, including obesity, but exhibit strikingly different rates of diabetes. Zebrafish models of these disorders show deficient ß-cells with diabetes in AS models and an increased ß-cells absent diabetes in BBS models, indicating ß-cell generation or maintenance that correlates with disease prevalence. Using transcriptome analyses, differential expression of several exocrine pancreas proteases with directionality that was consistent with ß-cell numbers were identified. Based on these lines of evidence, we hypothesized that pancreatic proteases directly impact ß-cells. In the present study, we examined this possibility and found that pancreatic protease genes contribute to proper maintenance of normal ß-cell numbers, proliferation in larval zebrafish, and regulation of AS and BBS ß-cell phenotypes. Our data suggest that these proteins can be taken up directly by cultured ß-cells and ex vivo murine islets, inducing proliferation in both. Endogenous uptake of pancreatic proteases by ß-cells was confirmed in vivo using transgenic zebrafish and in intact murine pancreata. Taken together, these findings support a novel proliferative signaling role for exocrine pancreas proteases through interaction with endocrine ß-cells.


Asunto(s)
Ciliopatías/etiología , Ciliopatías/metabolismo , Células Secretoras de Insulina/metabolismo , Páncreas Exocrino/enzimología , Péptido Hidrolasas/metabolismo , Animales , Animales Modificados Genéticamente , Proliferación Celular , Quimotripsina/genética , Quimotripsina/metabolismo , Ciliopatías/patología , Susceptibilidad a Enfermedades , Expresión Génica , Ratones , Mutación , Péptido Hidrolasas/genética , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA